
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ANALYSIS OF MECHANISMS FOR TCBE
CONTROL OF OBJECT REUSE IN CLIENTS

by

Cihan Agacayak

March 2000

Thesis Advisor:
Second Reader:

Cynthia E. Irvine
William A. Arbaugh

Approved for public release; distribution is unlimited.

2DTIC QUALITY INSPBCI1D4

20000622 018

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Analysis of Mechanisms for TCBE Control of Object Reuse in Clients

6. AUTHOR(S)
Cihan Agacayak.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This study contributes to the realization of a high assurance Multilevel Secure Local Area Network. The system consists

of a Trusted Computing Base (TCB) that acts as a server base. Clients are COTS workstations and software, augmented with a
hardware-based TCB Extension (TCBE). This work concentrates on object reuse control on the client, which is one of the security
services to be provided by the TCBE. Object reuse mechanisms are designed to assure that sensitive information does not persist
across sessions or session level changes. We analyzed 29 chips on the PC motherboard. We proposed and evaluated possible
solutions for object reuse control of four storage areas: main memory, AGP memory, cache and Real Time Clock (RTC) memory.
The feasibility of one proposed solution was demonstrated. We found that main memory can be cleared by slowing its refresh rate.
It was determined that AGP memory cannot be read out by devices on the PCI and ISA bus. The Intel INVD command can be used
to clear cache. RTC memory can be accessed and its integrity checked by TCBE software. This study establishes a foundation for
object reuse control efforts targeting COTS PC products manufactured by various vendors.

14. SUBJECT TERMS
Multilevel Secure Local Area Network (MLS-LAN), Trusted Computing Base (TCB), TCB Extension
(TCBE), object reuse, secure systems, object, subject, computers, networking, information security

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500

239-18

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std.

THIS PAGE INTENTIONALLY LEFT BLANK

11

Approved for public release; distribution is unlimited

ANALYSIS OF MECHANISMS FOR TCBE
CONTROL OF OBJECT REUSE IN CLIENTS

Cihan Agacayak
Lieutenant Junior Grade, Turkish Navy

B.S.E.E., Turkish Naval Academy, Tuzla Istanbul, 1994

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
March 2000

77%*i, f~ rA^^
Cynthia E. Irvine, Thesis Advisor

William A. Arbaugh, Second Reader

Jeffreyfciorr, Chairman
Department of Electrical and Computer Engineering

in

THIS PAGE INTENTIONALLY LEFT BLANK

IV

ABSTRACT

This study contributes to the realization of a high assurance Multilevel Secure

Local Area Network. The system consists of a Trusted Computing Base (TCB) that acts

as a server base. Clients are COTS workstations and software, augmented with a

hardware-based TCB Extension (TCBE). This work concentrates on object reuse control

on the client, which is one of the security services to be provided by the TCBE.

Object reuse mechanisms are designed to assure that sensitive information does

not persist across sessions or session level changes. We analyzed 29 chips on the PC

motherboard. We proposed and evaluated possible solutions for object reuse control of

four storage areas: main memory, AGP memory, cache and Real Time Clock (RTC)

memory. The feasibility of one proposed solution was demonstrated.

We found that main memory can be cleared by slowing its refresh rate. It was

determined that AGP memory cannot be read out by devices on the PCI and ISA bus. The

Intel INVD command can be used to clear cache. RTC memory can be accessed and its

integrity checked by TCBE software.

This study establishes a foundation for object reuse control efforts targeting

COTS PC products manufactured by various vendors.

THIS PAGE INTENTIONALLY LEFT BLANK

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
II. ANALYSIS OF STORAGE AREAS ON MOTHERBOARD 7

A. MOTHERBOARD 7
1. CPU Pentium- II 400MHz. 11
2. Award BIOS 11
3. Memory 11
4. ITE I/O Chips 11
5. 82443BX PCI/Host AGP Controller 14
6. 82371 AB PCI/ISA/IDE Accelerator (PIIX4) 15
7. Other Existing Chips. ■. 17

B. GRAPHICS CARD 24
1. HOLTEK HT27C5120-70 / 9852K0532-2 24
2. 5002LC /NPC 25
3. 1X16LKTW-SS (Four of Them) 26
4. Unidentified Chip26

C. SCSI CONTROLLER 27
1. L Infinity LX5115CD/9908C 27
2. CSI 93C46S / 9907G 27
3. Adaptec AIC-7856T/ BQEB910 / 745011 / BK 1965.1 28
4. BIOS 7B00 / 1701301-OOA / Vl.34.1 / Year 1998 28

D. SOUND CARD.... 29
1. ALS4000 / 93197T1 913C 29
2. HA17358 29

E. POWER SUPPLY 29
F. KEYBOARD 29
G. NETWORK ADAPTER CARD • 29

III. PC MOTHERBOARD AND CHIPSET OPERATION BASICS 33
A. PC INITIALIZATION 33
B. WHAT IS PCI 39
C. HOW IS THE PCI DEVICE DETECTED BY THE SYSTEM 41
D. PCI CONFIGURATION ACCESS METHODS 49

1. TYPE 0 Configuration Access: 49
2. TYPE 1 Configuration Transaction 56

IV. OBJECT REUSE CONTROL ANALYSIS 59
A. OBJECT REUSE FOR MAIN MEMORY 59

1. Software Based Object Reuse Controls 60
2. Hardware Based Object Reuse Control 69
3. Conclusion 75

B. PENTIUM-II CACHE 77
1. An Introduction to Cache 77
2. Cache Operation 77
3. Cache Architecture in the Pentium-II System 79
4. Need for Object Reuse Control on Cache 82

vii

5. Object Reuse Control of Cache 82
6. Conclusion 85

C. OBJECT REUSE CONTROL OF ACCELERATED GRAPHICS PORT AND
REAL TIME CLOCK RAM 86

1. AGP RAM 86
2. RTC RAM 89

V. EXPERIMENTATION 95
A. HYPOTHESIS 95
B. DESIGN OF EXPERIMENTATION 95
C. IMPLEMENTATION 95
D. EXPERIMENTATION DATA 98
E. CONCLUSION 99

VI. CONCLUSION 101
A. SUMMARY 101
B. RECOMMENDATIONS FOR FUTURE WORK 102
C. CONCLUSION 103

APPENDIX A: DESIGN CALCULATIONS FOR ZERO REFRESH 105
LIST OF REFERENCES 107
INITIAL DISTRIBUTION LIST 111

vni

LIST OF FIGURES

Figure 2.1 Motherboard layout '■ 9
Figure 2.2 Motherboard default jumper and pin settings 10
Figure 2.3 IT8687R I/O buffer chip block diagram 12
Figure 2.4 IT8671F Giga I/O block diagram 14
Figure 2.5 82443BX block diagram 15
Figure 2.6 82371AB block diagram 17
Figure 2.7 W83781D / 836AC block diagram 18
Figure 2.8 74F174D / 6CK6709 logic diagram 19
Figure 2.9 84AY33K / LV244A logic diagram... 19
Figure 2.10 DM7407M block diagram 20
Figure 2.11 LM2635M block diagram 21
Figure 2.12 DM74ALS05A block diagram 21
Figure 2.13 DM74ALS08A block diagram 22
Figure 2.14 74HCT14 / 90K806 block diagram 23
Figure 2.15 NE555 block diagram J 23
Figure 2.16 W40S11-23G/B871 1832PD block diagram 24
Figure 2.17 HOLTEK HT27C5120-70 block diagram 25
Figure 2.18 5002LC/NPC block diagram 26
Figure 2.19 L INFINITY LX5115CD/ 9908C block diagram 27
Figure 2.20 CSI 93C46S / 9907G block diagram 28
Figure 3.1 PCI system architecture in a PC 40
Figure 3.2 PCI Configuration address space 43
Figure 3.3 PCI Configuration header details 44
Figure 3.4 PCI Configuration Address port at 0CF8h 48
Figure 3.5 Type 0 configuration address register contents 50
Figure 3.6 Type 1 configuration address register contents 50
Figure 3.7 Host/PCI bridges device decoder 52
Figure 3.8 Direct connection of IDSEL pins to AD lines] 53
Figure 3.9 Resistive-Coupling of IDSEL pins to AD lines 54
Figure 4.1 Selectively overwriting the memory 61
Figure 4.2 Overwriting the whole memory 64
Figure 4.3 Clearing the memory via DRAM refresh rate configuration 67
Figure 4.4 Clearing the memory by using a direct hardware connection 70
Figure 4.5 Partial clearing of the memory 72
Figure 4.6 TCBE sharing the same power supply 74
Figure 4.7 TCBE with its own power supply 74
Figure 4.8 The Pentium II processor with cache and memory interfaces 79
Figure 4.9 Simplified Logical Block Diagram of the Pentium-II Processor Cartridge.... 81
Figure 4.10 The generic AGP bus relation with the rest of the system 89
Figure 4.11 Position of the PIIX4 in the logical organization of the PC 90
Figure 4.12 The access ports for the RTC module 91
Figure 5.1 The flow of the experiment 96

IX

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 2.1 Storage Areas in the PC 31
Table 3-1 Award BIOS POST Codes 38
Table 5.1 Assembler code for simulation of object reuse control in RTC RAM 98
Table A.l The truth table for SDRAM commands 107

XI

THIS PAGE INTENTIONALLY LEFT BLANK

Xll

ACKNOWLEDGMENT

I am very grateful for and impressed with the quality of input and support I have

received during my efforts to conduct this research. First and foremost, the knowledge

and efforts of Dr. Cynthia E. Irvine, my thesis advisor, made the success in this research

possible. It is Dr. Irvine's and James P. Anderson's concept of a MLS LAN that initially

sparked my interest, and their encouragement kept my motivation high throughout the

entire process. I appreciate the guidance, support and enthusiasm provided by James P.

Anderson. Many others played integral roles in facilitating this work and deserve special

recognition. Paul Clark provided expertise in maintaining the Computer Security Lab

LAN. Anastacia Cruz-Tokar provided expertise in graphical tools in the process of

creating the figures and tables. I would especially like to thank Dave Shifflett for the

brainstorms we had and Tara Lutman for her efforts to make my thesis more readable.

Finally, I would like to thank to my parents, Kemal and Aysel Agacayak, who have made

numerous sacrifices to bring me where I am now. I would like to devote this thesis to

them.

Xlll

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

I. INTRODUCTION

The main purpose of this study is to contribute to the realization of a multilevel

secure local area network (MLS-LAN). The system consists of a high assurance Trusted

Computing Base (TCB) that acts as a server. The TCB will provide confidentiality by

enforcing security policy against unauthorized disclosure of sensitive information while

insuring integrity against unauthorized modification and maintaining information

reliability. The TCB will allow controlled access to information at multiple security

levels and it will support COTS office productivity software at workstations (clients).

Clients consist of COTS workstations and software, augmented with a Trusted

Computing Base Extension (TCBE). The TCBE will support the MLS-LAN at the client

by supplying security services including:

- A secure attention key to invoke trusted path from client to server.

- Control of the PC hardware to provide for object reuse.

- Encryption services for protected communication channels.

- Control of the PC boot process to ensure system integrity.
i

The TCBE will provide the mechanisms to support the requirements of

commercial operating systems and applications while ensuring the enforcement of the

network security policy.

This study concentrates on object reuse control on the client, which is one of the

security services to be provided by the TCBE.

1

Why must object reuse be addressed in secure systems? In a secure system,

resources are shared under the control of the system. If object reuse is not implemented

appropriately then unauthorized access to information may occur. Storage objects could

become an information transfer channel between disjoint users as the system reassigns

the objects to users. For example, when an object is deleted, the operating system might

simply delete the pointer to that object but the data would still exist in the object. For

example, if we delete a text file residing in the memory, we actually only delete a pointer

which carries the starting address ofthat file in the memory but the whole text data still

exist in the memory. If object access is not controlled appropriately, objects can be

accessed by system calls through the use of memory scanners or debugging tools. Once

data are accessed, they can be copied onto media accessible to unauthorized individuals.

As resources of the automated information system, objects (such as main

memory, cache etc.) store the system's information. The subjects (users) are those who

attempt to access system objects. Object reuse mechanisms are designed to assure that the

authorized user (subject) of the system doesn't obtain residual information from system

resources (objects).

Object reuse is defined as the reassignment of an object to a storage medium (e.g.

page frame, disk sector, and magnetic tape) that had contained one or more objects. [Ref.

52]

The Trusted Computer System Evaluation Criteria (TCSEC) [Ref 52] object reuse

requirement applies only to storage objects accessible by untrusted users of an automated

information system. The Common Criteria [Ref 51] addresses the need to ensure that

deleted information is no longer accessible and that newly-created objects do not contain

information from previously used objects within the target of evaluation which is, in our

case, the PC.

Object reuse becomes very important in client systems since they have multiple

users and, without object reuse, the current user may be able to extract some of the

previous user's data from the client machine. Even with a user the problem exists. If the

user wants to change his or her session level to a less sensitive level, malicious software

might transfer sensitive information to this lower sensitivity session level, thereby

causing a security breach. This may be done simply by storing sensitive information into

one of the objects in the PC, which is preserved across session changes. In this case

malicious software might carry out all information transfer undetected by the innocent

user.

To be securely reassigned, no residual data can be available to the new subject

through standard mechanisms. So, the main goal of object reuse control is to ensure that

the allocation and the reassignment of system resources (objects), such as storage to

users, be accomplished in such a way as to prevent the disclosure of sensitive

information. For example, common physical objects on clients are:

CPU Registers

- Floating Point Coprocessor Registers

- Peripheral Coprocessor Registers

- Cache Memory

- Physical Memory

- Disk Blocks / Sectors

Magnetic Tape Blocks / Sectors

- Floppy Disks

- Printer / Scanner Buffers

The common objects implemented by operating systems are:

- Virtual Memory

- Files

- Directories

- Virtual Tape Drives

We are going to be dealing with network security policy not with the security

policy of operating systems. Hence we will not investigate the common objects created

by the operating systems.

This study intends to examine physical objects in the client PC and to provide

feasible solutions to the object reuse control problem by ensuring that there will be no

residual secrets in the objects accessible by untrusted entities. This solution will also

support start of each new session in a consistent initial state. Starting with a consistent

initial state will prevent the client system from possible infection by malicious software

(i.e. viruses or Trojan horses) installed in the previous session.

In many organizations, such as the Department of Defense, redundant desktop

computer systems are needed since multilevel security levels cannot be utilized in a

single workstation environment. The greater the number of security levels, the greater the

number of workstations that are required. Employing more workstations to accommodate

all security levels increases the cost for the organization.

This study will also contribute to the reduction of the extra cost spent by the

Department of Defense (DoD) for redundant desktop computer systems require a separate

client machine for the necessary number of sensitivity levels.

Finally, this will help establish a baseline for future miniaturization efforts. The

TCBE can be mapped onto a small chip using Very Large Scale Integrated Circuit tools

such as those designed by Cadence [Ref. 54]. Thereby enabling us to design handheld

computing and communication devices that work on a wireless MLS network. This may

provide a significant improvement for the tactical command communications used in

operations.

THIS PAGE INTENTIONALLY LEFT BLANK

II. ANALYSIS OF STORAGE AREAS ON MOTHERBOARD

One of the design goals of the TCBE is controlling the object reuse in the PC

environment. To accomplish this design requirement, it is important to have an

understanding of the storage areas in the PC and the way they are controlled. To do this,

the main components of a particular PC supplied for this project were mapped out. This

PC will be the host into which our prototype TCBE card will be installed.

The prototype PC has the main components listed below. Each will be analyzed in

more detail.

- Motherboard

- Graphics card

SCSI controller

- Sound card

- Power supply

- Keyboard

- Mouse

- Monitor

A. MOTHERBOARD

The motherboard is the most complex and the main part of the PC. It can be

viewed as the heart of the PC. It carries all the components listed above and connects

them to each other. These components are connected to each other with lines called "bus

lines".

The particular motherboard used in this analysis is a SOYO SY-6BE+ type

motherboard. It is a 100 MHz FSB Pentium® II Processor Based ATX Main board with

an AGP Port. This motherboard can support 66, 75, 83,100,103,112,124 and 133 MHz

system CPU clock speeds. [Ref. 44] [Ref. 45]

It supports the following processors

100 MHz FSB Pentium III 450/550 MHz

100 MHz FSB Pentium II 350/400/450 MHz

66 MHz FSB Pentium II233/266/300/333 MHz

66 MHz FSB Celeron™ 300A-466 MHz

66 MHz FSB Celeron™ 266/300 MHz

The motherboard is a high-performance ATX architecture and has software

power off control, power-on by keyboard, power on by alarm and modem ring on. It has

four 32-bit bus mastering PCI slots, which are PCI version 2.1 compliant. It has three 16-

bit ISA slots. One of the ISA slots is a PCI/ISA shared slot. It has one AGP slot, which is

version 1.0 compliant.

Figure 2.1 motherboard layout from Ref. [44]

Figure 2.1 shows the mapping of the devices residing on the SOYO SY-6BE+

motherboard. The device list associated with this figure is given below.

2. 82371EB Chipset

3. 82443BX Chipset

4. Ultra I/O Chip

5. PnP FLASH BIOS

6. ISA Slots

7. PCI Slots

8. AGP Port

9. DIMM Memory BJ

10. IDE 1/IDE2 Connector

11. Floppy Connector

12. COM1/COM2 Connector

13. Parallel Port Connector

14. PS/2 Keyboard Connector

15. PS/2 Mouse Connector

16. USB Vi Connector

17. ATX Power Connector

18. CMOS Battery (Lithium battery, 3V)

Figure 2.2 shows the default jumper and pin settings for the motherboard.

SA SLOT

#3 #2

JP44

#1

1'

FLASH
BIOS

PCI SLO'

#4 #3 #2 #1

82371 EB

1

s

O 0
0

00
BLK1

Keylock SPK

ooo oo\
OOI oo|

O O 0 Ol
o oio ol

RST PWR£T*a

 LED Ü5
El

JP5

COM2 COM1 USB1 PS/2
KB

Conn. PRT USB2
PS/2

Mouse
Conn.

r-i
ATX PW I

Slot 1 (for Pentium II CPU)

J

3V
Lithium

^Batteryy r

82443BX

DIMM1

DIMM 2

DIMM 3

IDE2 FDC

IDE1

Figure 2.2 motherboard default jumper and pin settings from Ref. [44]

The units on the motherboard are listed below with their serial numbers.

10

1. CPU Pentium- II 400MHz. (80523PY400512PE SL2U6 99110181-0414

MALAY)

This chip is the brain of the PC. It has eight physical (architectural) registers and

cache. The cache structure consists of two level one and one level-two caches. These

storage structures are going to be investigated in detail in following chapters. [Ref. 37],

[Ref. 17], [Ref. 18]

2. Award BIOS

The BIOS, Basic Input Output System, is the ROM portion of the PC as seen in

Figure 2.1. BIOS insulates the system and application software from the hardware by

providing primitive I/O services and by programming the hardware's interrupt handling.

The BIOS is a read only memory. It doesn't require object reuse control. [Ref. 1]

3. Memory 128 MB SDRAM (Two 64 MB Cards. Each Card Has 8X8

MB Chips. Chip# = 48LC8M8A2)

These two memory chips provide the main system memory for the PC. They are

located on the DIMM memory banks shown in Figure 2.1. They will be one of our main

object reuse concerns. [Ref. 23]

4. ITE I/O Chips

These chips provide I/O ability to the motherboard. Their location on the

motherboard is shown as Ultra I/O chip in Figure 2.1. Detailed information about each

individual chip will be given below. [Ref. 35], [Ref. 36]

11

a. IT8687R/9838-EYO/ZC8U47

This chip is an I/O buffer chip (see Figure 2.3). It can support two RS-232

serial ports and has very low power consumption (150MW). It contains six line drivers

and ten line receivers as shown in the block diagram in Figure 2.3. It supports one 24/28

MHz crystal oscillator clock generator.

This low power consumption chip is designed to serve as an interface

between data terminal equipment and data communication equipment in conformance

with the Electronic Industries Association standard RS-232 specifications. This chip

doesn't contain any storage areas.

RTS1#
TX1. OTR1#

RTS2#

TX2, DTR2#

UIF0.UIF1

UIF2.UIF3
UIF4

RX1.CTS1#

DSR1#,RLSD1#
RI1#

RX2,CTS2#

DSR2#. RLSD2#

RI2#

RAD0.RAD1

RAD2

Multiplexer
Line

Drivers

COM1.2
signals mixer

.<■ V

Line
Receivers

NRTS1.

NOTR1.NTX1

NRTS2,

NDTR2, NTX2

MODE

NRX1.NCTS1

NDSR1.NRLSD1
NRI1.

NRX2. NCTS2

NDSR2. NRLSD2
NRI2

RESET, AEN
DACK0#, DACK1#

DACK2#. DACK3#

SA12.SA13

SA14.SA15

X1

X2

Crystal
Oscillator
Amplifier

CLKOUT

Figure 2.3 IT8687R I/O buffer chip block diagram from Ref. [35]

12

b. IT8671F-A/9837-DYS/E7X360 I/O buffer chip

The IT8671F Giga I/O is a user-friendly, low cost peripheral controller.

With this chip no non-volatile memory is needed to store resource data for Plug and Play

system applications.

This chip consists of five logical devices (see Figure 2.4). The first is a

high-performance 2.88MB floppy disk controller with a digital data separator, supports

two 360K/ 720K /1.2M /1.44M /2.88M floppy disk drives.

The second is a multi-mode high-performance parallel port (see Figure

2.4) that features the bi-directional Standard Parallel Port (SPP), the Enhanced Parallel

Port (EPP, vl .7 and vl .9 are supported), and the IEEE 1284 compliant Extended

Capabilities Port (ECP).

The third and the fourth are two 16C550 standard compatible enhanced

UARTs (see Figure 2.4) that perform asynchronous communication with enhanced

wireless IrDAl (HPSIR), MIR, FIR or ASKIR protocols.

Finally, there is one 8042 compatible Keyboard controller with 2K

programmable ROM for customer specification. This chip has a 2K programmable ROM

and 256 bytes of data RAM in the keyboard controller module.

These five logical devices can be individually enabled or disabled via

software configuration registers.

13

JOR*

TC '

SDC

I •
SD7

IRQi.
IRQ3 ■*

j
IRQ12

DKM

IOCHRCY .

SAO

SA11

SA12-SA1S .

DACKC
I

CACK3

Floppy Drive
imeriace Coo*)nd-i

ISA

General
Purpose I/O

a .i

P&2 toouse

nP CcnSguraskm
Hegiae?

r
RAD3RAD2

Floppy Di£«
Control

Da:a Bus

Ccntfcl

T
<—►

m
Clw»

Generator

* »

Li1

T

Multi-mode
Parsl»!

IFU<F' * O-»

UARTs
Signa;
mixing
control
to«

UiFO

I
u;F4

Power Contrö Irrlrared Interface

Figure 2.4 IT8671F Giga I/O block diagram from Ref. [36]

It also has configuration registers in the logical devices but they are

returned to their default values after a reset signal reception. In this device our main

concern about object reuse will be the 256 bytes of data RAM in the keyboard controller

module.

5. 82443BX PCI/Host AGP Controller

This chip is the part of the 440BX AGP set, as shown in Figure 2.1. The detailed

block diagram for this chipset is given in Figure 2.5. It has been designed to interface

between the Pentium II processor's system bus at 100 or 66 MHz. This chip is a Host-to-

14

PCI Bridge interface but also it has been optimized with a 100/66 MHz SDRAM memory

controller and data path. [Ref.4]

A|3131*
ADS»
BPHlÄ
8MB»

CPURST*
DBSYs

DEFER«
HO|63:0j*

HHs
HrTMff

WOCX»
HR£0[4:K#

HTRDY*
DRDY»

RS[2:01*

RA5A!S:0j;C5A[S:0]» <
SASBi5:Cl;CSB|5:0)» •

CKE!3:2!/CSAl7:6J» •
CKE!S:4!/CSB[7:GJä

CASAir:0VDQMA[7:0] •
CASK5.t]/DOMB[S.I]

GCKE'CKEl ■
SRASJ3.AJ» '
CKEO'FENA ■
SCAS|B,A]» ■

MAA(13:0| ■
MAB[13.12#.11».10.9*:0#] •

WEA« ■
WEB« •

MD[63:0] ■
MECC[?:0J •

HCLKIN —
PO..KBSJ

Q-|_REFfB:A] —
AGPREF —
VTT|B:A] —

FSEF6V —
PCIRST* —

CRESETi <-
BREO0» -4-
TESTIN« ■*-

GCLKO *-
GCUCIN —
DCLKO ♦-

DCLKWR —

Host
Interlace

DRAM
Interface

Clocte.
Reset,
Test.
ami

PC! Bus
Interface
(PCI *C)

AGP
Interface

Power
Msjm

> Al>:31:0]
> G8Ef3:0JS

FRAME*
TRDYs
IRDY«
DEVSEL*
PAR
SERF»
PLOCK»

-> STOP*

PHOLDS
PHLÜA«
WSC#
PREQO»
PRECH41
PGNTO*
PGMTi4:1

-*■ GAD[31:C'
— GC:Eq3:C
— GFRAMEJ
— GIRDY»
— GTRDY*
— «STOP*
— GDEVS-l
— GREQ*
— G6NT*
— GPAB

PIPE»
SBA(7;0]
R9FS
STOP»
STT2.0I
ADSTB A
ADSTB B
SBSTB

■*■ CIKRUN»
— SUSTAT*
— BXPWRO

Figure 2.5 82443BX block diagram from Ref. [4]

This chip also has the Accelerated Graphics Port (AGP) interface functionality.

AGP is a high performance, component-level interconnect targeted at 3D graphics

applications and is based on a set of performance enhancements to PCI. This chip doesn't

have any storage areas other than the configuration registers.

6. 82371AB PCI/ISA/IDE Accelerator (PIIX4)

This chip is the part of the 440BX AGP set. [Ref. 5] describes the 82371 AB

PCI/ISA/IDE accelerator (PIIX4) as a multifunction PCI device (see Figure 2.6). It

15

implements a PCI-to-ISA bridge function, a Universal Serial Bus host/hub function, and

an Enhanced Power Management function.

As a PCI-to-ISA bridge, the PIIX4 integrates many common I/O functions found

in ISA-based PC systems, two 82C37 DMA Controllers, two 82C59 Interrupt

Controllers, an 82C54 Timer/Counter, and a real time clock. Chip select decoding is

provided for the BIOS, real time clock, keyboard Controller, second external

microcontroller, as well as two Programmable Chip Selects. The PIIX4 provides full Plug

and Play compatibility.

The PIIX4 supports two IDE connectors for up to four IDE devices providing an

interface for IDE hard disks and CD ROMs. Up to four IDE devices can be supported in

Bus Master mode. The PIIX4 contains support for "Ultra DMA/33" synchronous DMA

compatible devices.

The PIIX4 contains a Universal Serial Bus (USB) Host Controller that is

Universal Host Controller Interface (UHCI) compatible. The Host Controller's root hub

has two programmable USB ports.

The PIIX4 supports Enhanced Power Management, including full Clock Control,

Device Management for up to 14 devices, and Suspend and Resume logic with Power-on

Suspend, Suspend to RAM or Suspend to Disk. It fully supports Operating System

Directed Power Management via the Advanced Configuration and Power Interface

(ACPI) specification.

This chip has the real time clock memory, which is a considerable amount of

storage area, 256-bytes in size.

16

IOCS".«*
MEMCSren
MEMO*
MSMW*
AE!V
IOCMROY
IOCM<*«5PI0
SYSCLK
BALE
lORs
IOWV
SMEMR»
SMEMW*
ZERO'A'Ss
SA?*-0]
LAf23:17J>ePOjT:1]
SEHE*

IBQ0.'.-GPO14

iBOra-'M
INTR
NMI

SE3IRO/GPI?
P=!OTA:C]

:=!SC'D
3ROSOUT»,<G?OSS

SMIK
STPCLK«
SX'SMI«

SLPs
SUSCL«

BATLOW».'GPI9-

' W=M*/GPiS
LlDflOPftC
Ric^piie
BSM3ST«
PVW3TN*

SUSA*
Si.'-sa*ispois
öUSCir/GPOIS

p~inGo;o-Aj3

OACK!?;S.3'0]a *
TC

REFRES^s
REC(*-C;e«3?>IC2:4i

GNT;A:Cj».'GPOr3:Tl] *

CLK«8
USEPOr
Lisa»»* •*
OCp-0]»

CON-IGi2:1-
TEST*

PCS! 1:0*
XDI3B,GP022
XOE*.-GPC23
RTCfti.E«GPC2S
FERa*
!GN(Si=i
eioscas
BTCCSiWGPO»»
KECCS(t,'G=>Q2e
A2CM¥
A203ATE
uccs*

APiCCS*.<0>PO13
APiCACKa.'GPOIS
APCIREQif.'GPl.S

RTOCp.-S]

SMBALEBT*
SMBCLK
SMBDATA

GP!;2"!:13,-!]
GPS!12:2.cr (Moistened:.
OPÖ[3D,S8:S7.8.Ö:
GPOf29.26:9.7_13 (MultiOieKed)

Figure 2.6 82371 AB block diagram from Ref. [5]

7. Other Existing Chips

The chips that are listed in this section are physically very small sized and

unevenly distributed on the motherboard. To keep the general picture simple we didn't

show the location of these chips in Figure 2.1 and in Figure 2.2.

17

a. W83781D / 836AC Winbond Hardware Monitoring IC

This chip is a hardware status monitoring IC, shown in Figure 2.7, for

personal computers, server computers or microprocessor-based systems. It monitors the

critical values for the system such as the power supply voltage, temperature and fan

tachometer readings. It also has a case open alarm. This chip can be controlled by Intel's

LAN Desk Client Management or Winbond's application software. It has 33 registers and

20 of them are read/write [Ref. 34]. There is a total storage area of 20 bytes in this chip.

In this study we deferred analysis of this chip

8-Bt NO
and Mux
16rtlV LSB
0-4.096V
Input

IWfi

FAN
, Speed

Counter

Configure
and

Control
Registers

Watch-Dog
and

Interrupt
Status

Registers

ISA/Serial Bus Interface

■ IRQ

. OVT*

• B6EP/GPC*

. RSTOUT»

SS Cll CAAA DDDDDDDD
DC tOO S210 7 6543210
ALKWR«

(Serial Bus) ^ R ° (ISA Bus Interface)

Figure 2.7 W83781D / 836AC block diagram from Ref. [34]

b. 74F174D / 6CK6709 Edge Triggered D-Type Flip-Flop

This chip is a high-speed edge triggered D-type flip-flop, shown in Figure

2.8. It is used primarily as a 6-bit edge-triggered storage register. The information on the

D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device

has a master reset to simultaneously clear all flip-flops. This chip doesn't have a storage

area. [Ref. 24]

18

n [1
i

31

t
——c y

K

t-0 O-i

——C C*
a

I
—C IP

i

L-9 Q -

—< CP

cc

Y

Figure 2.8 74F174D / 6CK6709 logic diagram from Ref. [24]

c. 84AY33K/LV244A Buffer/Line Driver

This component is a low voltage Si-gate CMOS device, shown in Figure

2.9. It is an octal non-inverting buffer/line driver with 3-State outputs. This chip doesn't

have any storage structures on it. [Ref. 26]

2_

4_

6_

8_

1_

17_

1S_

13_

11_

19

1Ap

^
1A,

IA3

-IY,

:5^

2A-,

2Yn

2A2

2A3

2gE, 4^
;£^

J8

J6

J4

12

Figure 2.9 84AY33K / LV244A logic diagram from Ref. [26]

19

d. W124G/B014/1833PH Motherboard Frequency Generator

This chip is a lOOMHz-spread spectrum motherboard frequency generator.

This chip doesn't have any storage area.

e. DM7407M Hexadecimal Buffer/Driver

This chip is a hexadecimal buffer/driver with high voltage open-collector

outputs, shown in Figure 2.10. It contains six independent gates, each of which performs

a buffer function. This chip doesn't contain any storage areas. [Ref. 27]

VI A2 V2 A3 Y3 GND

Figure 2.10 DM7407M block diagram from Ref. [27]

/ LM2635M Synchronous Buck Regulator Controller

This chip is a 5-bit programmable synchronous buck regulator controller,

shown in Figure 2.11. It is specifically designed for use in synchronous DC/DC buck

converters for the Pentium II or Deschutes microprocessor. It provides power good

signal, over-voltage protection and output enable features as required by Intel VRM

specifications. This chip doesn't have any storage areas. [Ref. 22]

20

■CD B

Figure 2.11 LM2635M block diagram from Ref. [22]

g- DM74ALS05A Hexadecimal Inverter

This chip is a-hexadecimal inverter with open collector outputs, shown in

Figure 2J2. This device contains six independent gates, each of which performs the logic

INVERT function. The open-collector outputs require external pull-up resistors for

proper logical operation. This chip doesn't have any storage areas. [Ref. 29]
VCC A6 Y6 A5 Y5 A4 Y4

|14 13 12 11 10 9 a

-Cx^ -o°- -I>oJ

.H>°- rD^ rCx^i

1 2 3 4 5 6 |7
A1 Y3 GND Y1 A2 Y2 A3

Figure 2.12 DM74ALS05A block diagram from Ref. [29]

21

h. DM74ALS08A Quad 2-Input AND Gate

This chip is a quad 2-input AND gate, shown in Figure 2.13. It contains

four independent gates, each of which performs the logic AND function. This unit

doesn't have any storage capability. [Ref. 30]

Vcc B4 A4 Y4 B3 A3 Y3
|l4 13 |l2 11 10 | 9 8

1 |2 3 4 | 5 6 |7
A1 B1 Y1 A2 B2 Y2 GND

Figure 2.13 DM74ALS08A block diagram from Ref. [30]

L 74HCT14 / 90K806 Hexadecimal Schmitt-Trigger Inverter

This chip is a hexadecimal Schmitt-Trigger Inverter with LSTTL

compatible inputs, shown in Figure 2.14. This device can be used as a level converter for

interfacing TTL or NMOS outputs to high-speed CMOS inputs. The 74HCT14 is useful

to square up slow input rise and fall times. Due to the hysteresis voltage of the Schmitt

trigger, the HCT 14A finds applications in noisy environments. This chip doesn't have

any storage capability. [Ref. 25][Ref. 32]

22

Y1

Y2

11 IN. 10 % A5-

.s-JL^JLve

Figure 2.14 74HCT14 / 90K806 block diagram from Ref. [25]

J- NE555 Oscillator

This chip is a highly stable device for generating accurate time delays or

oscillations, shown in Figure 2.15. Additional terminals are also provided for triggering

or resetting. In the time delay mode, one external resistor and capacitor precisely controls

the time. This chip can make timing oscillations from microseconds through hours. This

chip doesn't have any storage area. [Ref. 31]

IHRESHOIC O

COirTBOl ' <** tfocl
VOLTAGE

TRIGGER O-

REStr

DISCHARGE

O k»

l^TrVs
012 }-*-f «13

«.7k
-VW-

£T <•

"—C»
4S mo

1» ,
-\v<—low 4

rat ? > Uk

Figure 2.15 NE555 block diagram from Ref. [31]
23

k. W40S11-23G/B8711832PD Clock Buffer/Driver

This chip on the PC is a low voltage, thirteen-output clock buffer/driver,

shown in Figure 2.16. Since the output buffer impedance is approximately 15Q, this

device is ideal for driving SDRAM DIMMs and it doesn't have any storage capability.

[Ref. 33]

SDATA-
SCLOCK

Serial Port -Device Control

BUF.JN

"SDRAMO

-SDRAM1

■SDRAM2

'SDRAM3

■SDRAM4

"SDRAM5

SORAM6

SDRAM7

SDRAM8

■SDRAM9

■SDRAM10
-SDRAM11

-SDRAM12

Figure 2.16 W40S11-23G/B871 1832PD block diagram from Ref. [33]

B. GRAPHICS CARD

1. HOLTEK HT27C5120-70 / 9852K0532-2

This chip family is a low power, 512 Kbit, +5V electrically one-time

programmable EPROM, shown in Figure 2.17. It is organized into 64K words with 8 bits

per word. It features a fast single address location programming, typically 75us per byte

(write access). Any byte can be accessed (read) in less than 70ns/90ns with respect to the

24

specifications. This eliminates the need for WAIT states in high-performance

microprocessor systems [Ref. 19]. This chip is a one time writable chip, so the storage

area in this chip is read only.

Row
Address

Column
Address

Q—► X-Decoder Cell Array

Q—► Y-Decoder Y-Gating

**-CJ>vcc
^-Ovss

 CE 6—►
OEA/PP Ö—►

CE & OE &
PGM & TEST
Control Logic

SACKT
&

Output Buffer
OO DQ0-DQ7

2.

Figure 2.17 HOLTEK HT27C5120-70 block diagram from Ref. [19]

5002LC/NPC

This chip is a monolithic, wideband, high slew rate (fast response), and high

output current buffer amplifier (shown in Figure 2.18). It offers a slew rate within

110MHz of bandwidth. It is known as a very reliable device and it increases the overall

circuit performance. This chip doesn't have any storage capability. [Ref. 21]

25

t>Vl+

6Vr

Figure 2.18 5002LC / NPC block diagram Ref. [21]

3. 1X16LKTW-SS (Four of Them)

This device is a memory module used as the local memory for the AGP card. The

usual size of this memory changes from 2 to 8 MB. This memory is a SRAM type

memory and it is a non-volatile storage area.

4. Unidentified Chip

This device couldn't be identified due to the heat sink attached on the chip and no

documentation is currently available. It is suspected that it could be the chip HT82V167-

100QFP [Ref. 20]. The HT82V167/HT82V168 VCD-plus A/V decoder is an enhanced

version of VCD Audio /Video decoder IC.

26

c. SCSI CONTROLLER

1. L Infinity LX5115CD/ 9908C

The L Infinity LX5115CD/ 9908C chip is an ultra 9-line SCSI terminator (shown

in Figure 2.19). Recognizing the needs for portable and configurable peripherals, the

LX5115 has a TTL compatible sleep/disable mode. This architecture can implement 8-bit

or 16-bit wide applications. It is approved for use with SCSI 1,2,3 and Ultra SCSI

standards. This device doesn't have any storage capability. [Ref. 42}

TERM POWER

CHSA3LE .
PIN

1.4V -!s-

THERMAL

LIMITING
CIRCUIT

X"
-^1 CURRENT

BIASING
CIRCUIT

T

;=*

24mA CURRENT

LIMITING CIRCUIT

X"

2.85V- Ft
rt.

. DATA OUTPUT

PIN DBjOl

1 OF 9 CHANNELS

Figure 2.19 L INFINITY LX5115CD/ 9908C block diagram from Ref. [42]

2. CSI93C46S/9907G

The CSI93C46S / 9907G chip is a one Kbit serial EEPROM memory device

(shown in Figure 2.20). It is configured as either registers of 16 bits or 8 bits. Each

register can be written or read serially. This device is designed to endure 1,000,000

program/erase cycles and have data retention of 100 years [Ref 41]. This chip has one

27

Kbit capacity and this storage area is hardware write protected. Because of this hardware

write protection we don't have to worry about the object reuse control of this storage

area.

VCC

1
GND

I
MEMORY ARRAY
ORGANIZATION

•*— ADDRESS
DECODER

—►>

'—»

ii

I
DATA

REGISTER
OUTPUT
BUFFER

Dl -H ,1

MODE DECODE
—»■ PE" —» LOGIC

SK- CLOCK
GENERATOR

DO

93C46/5a'57/66/86 F02

Figure 2.20 CSI 93C46S / 9907G block diagram from Ref. [41]

3. Adaptec AIC-7856T/ BQEB910 / 745011 / BK 1965.1

This device is a single chip PCI to fast SCSI controller. This chip works as an

interface between the PCI protocol and the SCSI protocol. Currently there is no public

documentation available which provides enough information about any existing storage

area in this chip.

4. BIOS 7B00/1701301-00A/V1.34.1/Year 1998

This chip is the BIOS of the SCSI controller card. Since this chip is a ROM, we

don't need to worry about the object reuse control of this storage area.

28

D. SOUND CARD

1. Avance Logic, Inc. / ALS4000 / 93197T1 913C

This chip is a 16-bit full duplex sound controller chip. Currently there is no public

documentation available which provides enough information about any existing storage

area in this chip.

2. HA17358

This chip is a low power dual operational amplifier for the sound card. Currently

there is no public documentation available which provides enough information about any

existing storage area in this chip.

E. POWER SUPPLY

The power supply provides and arranges the voltage and current levels for the PC.

It does not have any storage areas directly connected to the client PC.

F. KEYBOARD

UM6868-099649M MA24G5:

This chip is the decoder for the keyboard keystrokes. It doesn't have any storage

areas in it.

G. NETWORK ADAPTER CARD

The network card provides connection to an existing network. Currently a

network card is not installed on the motherboard of the client PC.

29

We need to analyze these components in order to find the storage areas, which

can be involved in the object reuse process. In this chapter the study concentrated on the

storage areas in the PC environment in the form of RAM. There are also other storage

areas, which consist of registers, and buffers as we can see from the detailed chip

mapping of the prototype PC. In this study we will not cover these minor storage areas

for object reuse control. The main storage areas found after this analysis are as given in

Table 2.1.

30

s
CO

P
-I

I
L

1-
L

2
C

A
C

H
E

1X
16

L
K

T
W

-S

S

%
O
Pi
p-

H
O

L
T

E
K

H

T
27

C
51

20
-7

0
/ 9

85
2K

05
32

-2

2 o
pi

17
01

30
1-

00

A
 B

IO
S

78
00

 V
l.3

4.
1

o
PÜ

A
W

A
R

D

B
IO

S

2

o
CO

<
00

s
00
U
00

S
3 G

IG
A

I/

O

82
37

1
A

B

M
O

T
H

E
R

B

O
A

R
D

G
R

A
P

H
IC

S
C

A
R

D

SC
SI

C

O
N

T
R

O
L

L
E

R

OH

=
u
CO

O

u

u
OH

0)

CO

0)

cS

o
CO

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

III. PC MOTHERBOARD AND CHIPSET OPERATION BASICS

To control object reuse in a PC, we need to understand how the machine works.

The secret of the operation of the PC lies in its heart: the chipset. To understand chipset

functions we need to know about the communication happening on the motherboard and

the central processor unit embedded on it. Each device in the PC communicates with

other devices over a protocol. In this chapter we are going to investigate how components

in a PC get initialized and how the PCI protocol works.

A. PC INITIALIZATION

We need to understand the start up process of the computer. This information will

assist us in defining some of the design aspects of the TCBE.

In this section we will talk about a generic startup of an IBM compatible

computer as it is also described in [Ref. l][Ref. 6] [Ref. 7] [Ref. 8] [Ref. 9] [Ref. 10] [Ref.

1 l][Ref. 3 8] [Ref. 3 9] [Ref. 40]. Every startup event differs slightly depending on the

vendor and the hardware configuration of the PC.

Pressing the power on button on the PC starts the first spark. When the machine is

first powered on the voltage outputs of the power supply are not at the correct levels yet.

To prevent any devices from operating until the power has stabilized, the power supply

keeps its "power good" output signal at deasserted during this period. The deasserted

signal is inverted on the motherboard side and used as an asserted system reset signal.

The reset signal is propagated into all devices so that no device can operate until this

signal is deasserted. The reset signal remains asserted until the power is stabilized. The

33

power supply asserts the "power good" signal when the power has stabilized. On the

motherboard side this causes the reset signal to be deasserted. Besides preventing

devices from operating, the reset signal also presets all the devices to a known state so

that they always start operating the same way when the reset is removed.

This forces the x86 processor to always come up in real mode with caching,

paging and interrupts disabled. When the reset is deasserted the processor fetches its first

instruction from ROM memory. The power on start address is OOOOFFFFh for the CPU.

This address contains an unconditional branch to an address lower in memory. These

locations contain the first code lines of the power on self-test (POST) and configuration

program. At the beginning the caching is disabled. When caching is disabled the

prefetcher in the CPU always does 32 byte code reads.

In a multiprocessor environment only one of the processors is selected to begin

fetching and executing the POST when reset is removed from the processors. The same

processor also will configure the system board devices and enable them, detect the

existence of other processors and perform the boot process to read the operating system

into memory and pass the control to it. This processor is called the bootstrap processor

(BSP). To define the BSP the processors negotiate amongst themselves before the first

instruction is fetched from memory. This negotiation is not performed on the host

processor bus. It is performed on a special bus, which is called as the Advanced

Programmable Interrupt Controller. After the BSP is defined all other processors are

defined as application processors and they remain in the halt state until they get a startup

message from the BSP.

34

When the machine is started the majority of the devices in the machine are

disabled. Devices that are power up enabled must be operational when the machine is

first started. For example, the keyboard should be responsive at start up. The display must

be enabled in text mode so that it can display messages related with the flow of the

process and emerging warnings and errors during the startup process. The mass storage

controller must be enabled so that the programs can be loaded into memory and executed.

The chipset and the memory controllers are configured using the configuration

mechanism, which is also used for the configuration of the PCI devices. This may seem

confusing since the memory controller doesn't truly reside on the PCI bus. Each of the

chipset members and the memory controller implement the PCI configuration address

port and configuration data port. We are going to analyze the PCI configuration

mechanism in detail later.

The POST and hardware initialization process is the result execution of the code

residing in the BIOS. On our prototype computer we have the AWARD Modular BIOS

version 4.51-PG.

For more detailed information about the POST and initialization process the steps

taken by the BIOS code for our prototype computer are given in Table 3.1 below. Here

again we note that these steps could be in different type or order according to the vendor

and hardware configuration.

35

Code
(hex)
Co

BE

Cl
C5
C6
8

B

D

Name

Turn Off Chipset
Processor Test 1

Processor Test 2

Initialize Chips

Description

Cache OEM Specific-Cache control
Processor Status (1 FLAGS) Verification.
Tests the following processor status flags: carry,
zero, sign, and overflow.
The BIOS sets each flag, verifies they are set, then
turns each flag off and verifies it is off.
Read/Write/Verify all CPU registers except SS, SP,
and BP with data pattern FF and 00.

Test Memory
Refresh Toggle

Blank video,
Initialize keyboard
Reserved
Test CMOS Interface
and Battery Status
Chipset Default
Initialization
Memory presence test
Early Shadow
Cache presence test

Disable NMI, PIE, AIE, UEI, and SQWV.
Disable video, parity checking, DMA.
Reset math coprocessor. Clear all page registers,
CMOS shutdown byte. Initialize timer 0,1, and 2,
including setting EISA timer to a known state.
Initialize DMA controllers 0 and 1. Initialize
interrupt controllers 0 and 1. Initialize EISA
extended registers.
RAM must be periodically refreshed to keep the
memory from decaying. This function ensures that
the memory refresh function is working properly.
Keyboard controller initialization.

Verifies CMOS is working correctly, detects bad
battery
Program chipset registers with power on BIOS
defaults.
OEM Specific-Test to size on-board memory

Setup low memory

Early Cache
Initialization
Setup Interrupt
Vector Table

Test CMOS RAM
Checksum
Initialize keyboard

Initialize Video
Interface

OEM Specific-Early Shadow enable for fast boot.
External cache size detection
Early chip set initialization. Memory presence test.
OEM chip set routines. Clear low 64K of memory.
Test first 64K memory.
Cyrix CPU initialization. Cache initialization

Initialize first 120 interrupt vectors with
SPURIOUS-INT-HDLR and initialize INT 00h-lFh
according to INTJBL
Test CMOS RAM Checksum, if bad, or insert key
pressed, load defaults.
Detect type of keyboard controller (optional)
Set NUM-LOCK status.
Detect CPU clock. Read CMOS location 14h to
find out type of video in use. Detect and Initialize

36

Video Adapter.
E Test Video Memory Test video memory, write sign-on message to

screen. Setup shadow RAM - Enable shadow
according to Setup

F Test DMA Controller
0

BIOS checksum test. Keyboard detect and
initialization

10 Test DMA Controller
1

11 Test DMA Page
Registers

Test DMA Page Registers

12-13 Reserved
14 Test Timer Counter 2 Test 8254 Timer 0 Counter 2.
15 Test 8259-1 Mask

Bits
Verify 8259 Channel 1 masked interrupts by
alternately turning off and on the interrupt lines.

16 Test 8259-2 Mask
Bits

Verify 8259 Channel 2 masked interrupts by
alternately turning off and on the interrupt lines.

17 Test Stuck 8259's
Interrupt Bits

Turn off interrupts then verify no interrupt mask
register is on.

18 Test 8259 Interrupt
Functionality

Force an interrupt and verify the interrupt occurred

19 Test Stuck NMI Bits
(Parity/IO Check)

Verify that NMI can be cleared.

1A Display CPU clock
IB-IE Reserved
IF Set EISA Mode If the EISA non-volatile memory checksum is

good, execute EISA initialization. If not, execute
ISA tests and clear the EISA mode flag.
Test EISA Configuration Memory Integrity
(checksum and communication interface).

20 Enable Slot 0 Initialize slot 0 (System Board).
21-2F Enable Slotsl-15 Initialize slots 1 through 15.
30 Size Base and

Extended Memory
Size base memory from 256K to 640K and
extended memory above 1MB.

31 Test Base and
Extended Memory

Test base memory from 25 6K to 640K and
extended memory above 1MB using various
patterns.
NOTE: This test is skipped in EISA mode and can
be skipped with ESC key in ISA mode.

32 Test EISA Extended
Memory

If the EISA Mode flag is set then test, EISA
memory found in slots initialization.
NOTE: This test is skipped in ISA mode and can be
skipped with ESC key in EISA mode.

33-3B Reserved
3C Setup Enabled
3D Initialize & Install | Detect if the mouse is present, initialize the mouse,

37

Mouse install interrupt vectors.
3E Setup Cache

Controller
Initialize cache controller

3F Reserved
BF Chipset Initialization Program chipset registers with Setup values
40 Display virus protect disable or enable
41 Initialize Floppy

Drive and Controller
Initialize floppy disk drive controller and any
drives.

42 Initialize Hard Drive
and Controller

Initialize hard drive controller and any drives.

43 Detect & Initialize
Serial/Parallel Ports

Initialize any serial and parallel ports (including the
gameport).

44 Reserved
45 Detect & Initialize

Math Coprocessor
Initialize the math coprocessor

46 Reserved
47 Reserved
48-4D Reserved
4E Manufacturing POST

Loop or Display
Messages

Reboot if the Manufacturing POST Loop pin is set.
Otherwise display any messages (i.e., any non-fatal
errors that were detected during POST) and enter
Setup.

4F Security Check Ask password security (optional).
50 Write CMOS Write all CMOS values back to RAM and clear

screen.
51 Pre-boot Enable Enable parity checker. Enable NMI, Enable cache

before boot
52 Initialize Option

ROMs
Initialize any option ROMs present from C8000h to
EFFFFh.
NOTE: When the FSCAN option is enabled, ROMs
initialize from C8000h toF7FFFh.

53 Initialize Time Value Initialize time value in 40h: BIOS area.
60 Setup Virus Protect Setup virus protect according to Setup
61 Set Boot Speed Set system speed for boot
62 Setup NumLock Setup NumLock status according to Setup
63 Boot Attempt Set low stack. Boot via INT 19h.
BO Spurious If interrupt occurs in protected mode
Bl Unclaimed NMI If unmasked NMI occurs, display Press Fl to

disable NMI, F2 reboot.
El-EF Setup Pages El-Page 1,E2-Page 2, etc.
FF Boot

Table 3-1 AWARD BIOS POST Codes from Ref. [39]

38

NOTE: EISA POST codes are typically output to port address 300h. ISA POST

codes are output to port address 80h.

By looking at this table we can gain an understanding of the startup process of an

IBM compatible computer.

The TCBE is planned to be designed as a PCI add on card. To define some of the

design aspects of the TCBE we need to understand what PCI means and how it works.

B. WHAT IS PCI

This section presents the PCI standard, which is to be used in the key solutions

related to object reuse control efforts. PCI stands for "Peripheral Component

Interconnect". Intel Corporation developed the PCI bus specification version 1.0. A

consortium of industry partners known as the PCI special interest group (SIG) now

manages the specification. The latest revision of the specification is 2.2 and our prototype

computer supports this revision. The PCI bus can be populated with adapters requiring

fast access to each other and/or system memory. They can be accesses by the processor at

the full native bus speed. Also note that all read and write transactions over the PCI bus

can be done as burst transactions, increasing the transaction speed.

There are two participants in every PCI burst transfer, the initiator and the target.

The initiator can also be called the bus master. The target is the device addressed by the

bus master. PCI initiator and target devices are commonly referred to as PCI-compliant

agents according to the PCI spec.

39

Burst transaction means that every data transfer doesn't need to be preceded by

address information. In a burst transaction a single address phase can be followed by two

or more data phases. The target is given the start address and the type of the transaction.

The initiator informs the target whether the coming data is the last one or not. The

transaction completes when the final data arrives at the target.

Figure 3.1 below illustrates the relation between the PCI, expansion, processor

and memory buses.

APICBus

«CPU

VMI
(Video Modul« VF)

CCIR601

Video
.BIOS/'

CPU

FSB

0 ^..HOSt-Eorfc.., :: '^l

\ Monitor j
J

Port

North
Bridge -», '.'.; Main

'-'.Memory :

Local
Video PCI Slots

PCI Bus n
IDE U

EDMIIMI
tHBAi

Hard
Drive

Sou*

IRQ*.

IDE CD ROM

USB
 V "V" V*

— ■■<*P1C/

Byatem'i

jggf

Ö"

I

'■■, Ssttper>/i'
IO

fill!
1 1

—H

~....C0M1

fii'gjj]

! :"=t en>!^ '
w COM2 %

Sound
Chipset

1HI
ISA

Slot*

"*l__i=

Figure 3.1 PCI system architecture in a PC from Ref. [10]

40

In Figure 3.1 the North Bridge is the Host/PCI Bridge and it connects the host

processor bus to the PCI bus. The South Bridge is the PCI-to-ISA Bridge. South bridge

connects the PCI bus to the ISA or EISA bus. The south bridge also utilizes the interrupt

controller, IDE controller, USB Host controller and the DMA controller. All actions on

the PCI bus are synchronized to the PCI clock signal. The PCI revision 1.0 stated that all

PCI devices must support operation speeds from 16 MHz up to 33 MHz. The PCI

revision spec 2.1 also defined PCI bus operation at speeds up to 66 MHz. Now we will

investigate how the PCI devices are detected.

C. HOW IS THE PCI DEVICE DETECTED BY THE SYSTEM

A PCI device may either be embedded on the PCI bus or installed in a PCI add-in

connector. In either case each device is assigned a physical device number based on its

physical position on the bus.

A PCI device is detected by attempting to read from its vendor ID register. This is

a required 16-bit register. If the target is present a vendor ID other than FFFFh is

returned.

When the machine is first powered on, the configuration software must scan the '

various buses in the system (PCI and others) to determine what devices exist and what

configuration requirements they have. This process is commonly referred to using any of

the terms below:

- Scanning the bus

- Walking the bus

41

- Probing the bus

- The discovery process

- Bus enumeration

The program that performs the PCI bus scan is called the as the "bus enumerator".

The configuration software then proceeds to read from the device's other configuration

registers to determine the resources required by the device.

Each PCI add in connector implements two card present bits referred to as

PRSNT1# and PRSNT2#. If a card connector is unoccupied a value of 1 lb is read from

its two card present signals. Any other value indicates that a card is installed in the

connector.

When the configuration software has determined that a card connector is

occupied, it can determine the card type by reading from its vendor and device ID

configuration registers as shown in Figure 3.2 and Figure 3.3.

Once a device is detected the configuration program reads from its configuration

header registers to determine its resource requirements. The configuration program can

then write the appropriate values to these same registers to allocate non-conflicting

resources to the device.

42

Byte Number
3 2 1 0

Configuration
Header
Space

Device-specific
Configuration

Registers

I

00

15
16

z
■o

Figure 3.2 PCI Configuration address space from Ref. [10]

Once the resources have been allocated to the device the configuration program

writes the appropriate value to its command register to enable the device for normal

operation.

In order to facilitate this process each PCI function must implement a base set of

configuration registers defined by the PCI specification. The configuration software reads

a subset of a device's configuration registers in order to determine the presence of the

function and its type. Having determined the presence of the device the software then

accesses the function's other configuration registers to determine how many blocks of

memory and/or I/O space the device requires. It then programs the device's memory

43

and/or I/O address decoders in order to respond to memory and/or I/O address ranges that

are guaranteed to be mutually exclusive from those assigned to other system devices.

Byte
2 1

Doubleword
Number

(in decimal)

0
Device

ID ..■••■■..•
••;. StatUS -:■
Register

Vendor
ID :'

Command
Realster'-:

BIST Header
Type

Latency
Timer*

Cache
Line
 Siy.e

Base Address 0

Base Address 1

Base Address 2

Base Address 3

Base Address 4

Base Address 5

CardBus CIS Pointer

Subsystem ID Subsystem
Vendor ID

Expansion ROM
Base Address

Reserved

Reserved

Max Lat Min_Gnt Interrupt
Pin

Interrupt
Line

,1
00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Figure 3.3 PCI Configuration header details from Ref. [10]

If the function indicates usage of a PCI interrupt request pin via one of its

configuration registers, the configuration software programs it with routing information

indicating what system interrupt request line the function's PCI interrupt request pin is

routed to by the system.

If the device has bus mastering capability the configuration software can read two

of its configuration registers to determine how often it requires access to the PCI bus

(arbitration priority need) and how long it would like to maintain ownership in order to

44

achieve adequate throughput. The system configuration software can utilize this

information to program the bus master's Latency Timer register and the PCI bus arbiter

to provide the optimal PCI bus utilization.

A PCI device that contains only one function is referred to as a single function

device. A PCI device that contains more than one function is referred to as a multi

function device. A bit in one of a function's configuration registers defines whether the

package contains one function or more.

Intel x86 and Power PC 60x processors possess the ability to address two distinct

address spaces, I/O and memory. PCI bus masters use PCI I/O and memory transactions

to access PCI I/O and memory locations respectively. In addition, a third access type,

configuration access, is used to access a device's configuration registers. A device's and

its function's configuration registers must be initialized at startup time to configure the

function to respond to memory and/or I/O address ranges assigned to it by the

configuration software.

The PCI memory and I/O space is 4GB in size. PCI configuration space is divided

into a separate, dedicated configuration address space for each function contained within

a PCI device (in a chip or on a card). The first 16 double word (dword) part of a

function's configuration space is referred to as the function's configuration header space.

Three header types are currently defined. These are:

- Header type zero (for all devices other than PCI-to-PCI bridges)

- Header type one (for PCI-to-PCI bridges)

- Header type two (for Card Bus bridges)

45

The system designer must provide a mechanism that the Host/PCI Bridge will use

to convert processor-initiated accesses with certain pre-defined memory or I/O addresses

into configuration accesses on the PCI bus.

According to the 2.2 PCI spec. Every device other than host bus bridges must

implement configuration address space. Host bus bridges may optionally implement

configuration address space. If the host /PCI bridge doesn't implement its configuration

registers in PCI configuration space, its configuration registers may be implemented in

either I/O or memory-mapped I/O space. Memory mapped I/O space is generally better

because x86 I/O space is small (64 KB total) and crowded with other configuration

information for the PC system.

Initially the BIOS performs device configuration and once a plug and play OS,

such as Windows 98, has been booted, device management control is passed to it.

The programmer must supply the following information to the Host/PCI Bridge

when performing a configuration read or write.

Target PCI bus.

- Target PCI device on the bus

- Target PCI function within the device

Target double word within the function's configuration space.

- Target byte within the double word.

The configuration mechanism utilizes two 32-bit I/O ports located at

addresses 0CF8h and OCFCh. These two ports are:

46

- 32-bit configuration address port (occupies I/O addresses from 0CF8h

through OCFBh) as it is shown in Figure 3.4

- 32-bit configuration data port (occupies I/O addresses from OCFCh

through OCFFh)

Accessing one of the PCI function's configuration registers is a two-step process:

- Write the target bus number, device number, function number and double

word number to the configuration address port and set the enable bit in it to one,

indicating that the configuration process is enabled.

- Perform a four byte I/O read from or a write to the configuration data port

In response the Host/PCI Bridge compares the specified target bus to the range of

buses that exist on the other side of the bridge and if the target bus resides beyond the

bridge, it initiates a PCI configuration read or write.

Any 8 or 16-bit access within this I/O double word is passed directly on to the

PCI bus as an 8 or 16-bit PCI I/O access.

The information written to the configuration address port is latched by the host

/PCI bridge. If bit 31 is set to one and the target bus number compares to the bridge's PCI

bus number register, the bridge is enabled to convert a subsequent processor access,

targeting its configuration data port into a PCI configuration access (see Figure 3.4). The

processor then initiates a one-byte, two-byte, or four byte I/O read from or a write

transaction to the configuration data port at OCFCh. This stimulates the bridge to arbitrate

for ownership of the PCI bus and then to perform a configuration read or write. It will be

47

a type-0 configuration transaction if the target bus is PCI bus 0, or a type-1 configuration

transaction if the target bus is further out in the bus hierarchy beyond bus 0. We will talk

about these configuration methods later.

OCFBh OCFAh 0CF9h 0CF8h
31 30 24 23 16 15 11 10 8 7 2 10

Reserved Bus
Number

Device Function
Number i Number Doubieword 00

Should always be zeros j
Enable Configuration Space Mapping
1 = enabled

Figure 3.4 PCI Configuration Address port at 0CF8h from Ref. [10]

When the operating system begins to read loadable device drivers into memory

the device driver's initialization code calls the BIOS. The BIOS scans the PCI bus by

reading the vendor and device IDs from every device and looking for a match. When a

match is encountered the BIOS returns the device number to the driver along with the

PCI bus number and the function number, which identifies one of eight functions within

the target physical device. This way the driver has the information to reach the

configuration registers of the PCI device.

As a summary, PCI devices can be automatically configured without any

intervention by the end user. In addition, the OS can identify the driver associated with

the device and load it into memory.

48

D. PCI CONFIGURATION ACCESS METHODS

1. TYPE 0 Configuration Access:

When devices that reside on a PCI bus detect a type-0 configuration in progress

this informs them that one of them is the target device. When devices that reside on a PCI

bus (other than PCI-to-PCI bridges) detect a type-1 configuration access in progress they

ignore the transaction.

The Host/PCI Bridge latches the information written to the configuration address

port. If bit 31 is set to one and the target bus or subordinate bus number is equal to or less

than the bridge's PCI bus number register, the bridge is enabled to convert a subsequent

processor access targeting its configuration data port into a PCI configuration access. The

processor then initiates a one-byte, two-byte or four-byte I/O read or write-transaction to

the configuration data port at OCFCh. This stimulates the bridge to arbitrate for

ownership of the PCI bus and then to perform a configuration read or configuration write.

It will be a type-0 configuration transaction if the target bus is PCI bus-0, or a type-1

configuration transaction if the target bus is further out in the bus hierarchy beyond bus-

0.

a. TYPE 0 Configuration Transaction

(1) Address phase: During any PCI transaction, all PCI devices on

the bus latch the following information at the end of the address phase:

The contents of the AD bus:

For type 0:

49

as shown in Figure 3.5.

Target function, configuration double word and 00b

Target configuration doubleword number

31 11 10 8 7 2 1 0

Reserved Function
Number

DW
Number

Figure 3.5 Type 0 configuration address register contents from Ref. [10]

For type 1:

Target bus number, device number, function

number, dword number and 01b as shown in Figure 3.6.

The state of the FRAME# signal, which

indicates the presence of a valid start address and transaction type on the bus.

The state of the IDSEL signal, which is an

input signal to the PCI device and used as chip select, only for type-0 configuration

transaction.

- The command on the command or byte

enable bus, C /BE# [3:0], which defines the type of transaction (configuration read or

configuration write).

Doubleword number in device's configuration space

31 24 23 16 15 1110 8 7 * 2 1 0

Reserved Bus
Number

Device
Number

Function
Number

DW
Number 0 1

Figure 3.6 Type 1 configuration address register contents from Ref. [10]

50

The PCI device that samples its IDSEL asserted is the

target device. If address bits AD [1:0] are 00b, this indicates that this is a type 0

transaction targeting one of the devices on this bus, note Figure 3.5. The AD [7:2]

indicates the target configuration double word. The AD [10:8] indicates the target

function within the physical device selected by the IDSEL signal. The ADs [31:11] are

reserved and must not be interpreted by any devices.

The target device number specified in bits [15:11] in the

configuration address port are decoded within the bridge and the decoder asserts the

IDSEL output signal during the transaction's address phase, note Figure 3.7. If there is no

device on its secondary bus no DEVSEL#, which is a signal asserted by the target device

to inform the initiator that the target has decoded its address, will be asserted and the

bridge will cease the transaction with a master abort. Theoretically 32 devices can be

implemented on a PCI bus but in reality this number cannot exceed 10 because of the

electrical load limitations.

There are two methods in implementing the IDSEL signal

routing. In the first method the IDSELs are routed over unused AD lines, see Figure 3.8

and Figure 3.9 for different implementations. The second method implements separate

IDSEL output pins and traces.

51

Processor

1 Address Port ii Data Port

Host/PCI Bridge
Bus = 4

Subord = 5

-£
I PCI Bus 4

PCI-to-PCI
Bridge

Primary = 4
Secondary = 5

Subord = 5

PCI Bus 5,

Figure 3.7 Host/PCI bridges device decoder from Ref. [10]

PCI-to-PCI bridges must use the first method. In the first

method the upper 21 address lines, which aren't used during the address phase in a type 0

access are used for the IDSEL signal routing.

In general the signal mapping recommended is given

below.

IDSEL device 0 -> AD16

IDSEL device 1 -> AD17

IDSEL device 2 -» AD 18

IDSEL device 15 -» AD31

52

Processor

Host/PCI
Bridge

I
Main

Memory

AD16 AD17 AD18 AD19 AD20

> 1 1 1 ' T " * V ! u |
1
0
s

! E
L

j l
D

! s
E
L

:
E
L

i
D
S
E
L

D
S
E
L

P 1 p P P P

1

1]
N N N N

Device
0

Device
1

Device
2

Device
3

Device
4

Figure 3.8 Direct connection of IDSEL pins to AD lines from Ref. [10]

In the second method, after the host/PCI bridge decodes

bits [15:11] in the configuration address port, it will assert the target physical devices

IDSEL output signal line. This method requires extra IDSEL pins on the bridge and a

separate point-to-point IDSEL line (trace) on the system motherboard between the bridge

and each PCI device or connector. This is not a preferred solution in real life. The first

method is mostly preferred in real life implementations.

53

Processor

Host/PCI
Bridge Main

Memory

I AD19

s
E
L

Device
3

1 AD20

Device
4

Figure 3.9 Resistive-Coupling of IDSEL pins to AD lines from Ref. [10]

The host/PCI bridge initiates the type 0 configuration

transaction by driving out the target function and double word number on the address bus

with AD[1:0] set to 00b to indicate that this is a type 0 configuration transaction. It also

outputs its internal device decoder's IDSEL output signals onto the upper AD lines. The

configuration read or write is driven onto C/BE#[3:0]. No devices will pay attention to

the transaction until FRAME# is asserted.

(2) Data phase: As the data phase is entered the bridge sets the

C/BE#[3:0] to indicate which bytes within the currently addressed double word will be

transferred. The bridge gets this information from the processor's access to the bridges

configuration data port.

54,

C/BE#[0] asserted -> one byte (read or write)

C/BE#[1:0] asserted -> two byte (read or write)

C/BE#[3:0] asserted -> four byte (read or write)

When a device detects that its IDSEL pin was asserted at

the end of the address phase, it must determine whether or not to claim the transaction.

How it does this depends on whether it is a single function or a multi-function device.

According to the PCI version 2.2 specs:

(a) Single-function device:

Decodes the function number and only asserts

DEVSEL# for function zero

Or may respond to all function numbers other than

zero by not asserting DEVSEL and allowing the transaction to terminate via a master

abort.

(b) Multi-function device:

must implement a function decoder

must decode the function number delivered on

AD[10:8] during the address phase.

If the target function is implemented, the device

asserts DEVSEL# and claims the transaction

Otherwise it ignores the transaction.

55

2. TYPE 1 Configuration Transaction

When a bridge initiates a configuration access on a PCI bus, it places the

configuration address information on the AD bus and the configuration command on the

C/BE bus. During the address phase of a type-1 configuration access, the information on

the AD bus is formatted as follows:

- AD [1:0] contain a 01b. Type 1 configuration access.

AD [7:2] identifies one of 64 configuration double words within the target

device's configuration space.

AD [10:8] identifies one of eight device dependent functions within the

target physical device.

AD [15:11] identifies one of the 32 physical devices. This field is used by

the bridge for the selection of which device's IDSEL line to assert.

AD [23:16] identifies one of the 256 PCI buses in the system

AD [31:24] are reserved and cleared to zero.

The configuration-read or write message is presented on the C/BE bus during the

address phase. During a type 1 configuration access, PCI devices ignore the state of their

IDSEL inputs.

When any PCI-to-PCI bridge latches a type-1 configuration access on its primary

side, it must determine which of the following actions to take:

If the bus number field on the AD bus doesn't match the number of its

secondary bus or its subordinate buses then it ignores the access.

56

- If the bus number field matches the bus number of its secondary bus it will

claim and pass the configuration access onto its secondary bus as a Type 0 configuration

access.

- AD [1:0] on the secondary bus are set to 00b,

- AD [10:2] are passed to its secondary AD bus.

-• The device number field is decoded within the bridge to select one

of the IDSEL lines to assert on the secondary bus.

- The configuration command is passed from the primary to the

secondary C/BE bus.

- If the bus number is not equal to the secondary bus number but is

within the subordinate bus number range (small or equal) the bridge claims and passes

the access through as a Type 1 configuration access.

- AD [31:0] are passed to its secondary AD bus.

- The configuration command is passed from the primary to the

secondary C/BE bus.

When the target device does not exist DEVSEL# is not asserted by any PCI

function. If this is the case, the Host/PCI Bridge Master Aborts the transaction and sets

the master abort bit in its configuration status register. If Master Abort happens on a read,

the bridge will return all ones to the processor, as the read data (if vendor ID read is

FFFFh no device exists). If the Master Abort happens on a write, the bridge acts as if the

write completed OK.

57

In this chapter we went over the PC boot-up process and the PCI protocol. In the

next chapter we will use this information to propose solutions for object reuse control of

storage areas, each of which were analyzed in the previous chapter.

58

IV. OBJECT REUSE CONTROL ANALYSIS

In an MLS system, resources are shared under the control of the system. In the

client PC the storage objects could become an information transfer channel between

disjoint users as the system reassigns the objects to users. If the object access is not

controlled appropriately objects can be accessed by system calls, through use of memory

scanners or debugging tools. This is a problem because, when an object is deleted by the

operating system, only the pointer to the location of the object is erased, not the object

itself, leaving the information in the object vulnerable to unauthorized accesses. In this

chapter we are going to discuss solutions for the object reuse control of PC main

memory, PC CPU cache, Accelerated Graphics Port memory and Real Time Clock

memory.

A. OBJECT REUSE FOR MAIN MEMORY

The PC main memory (DRAM) is one of the main storage objects in the client

computer. We want object reuse control over the main memory to prevent any sensitive

information leakage between two sessions.

In chapter-II we analyzed the motherboard and the components on it. Now we

have an understanding about the functioning of these devices on the motherboard. In this

chapter we will investigate possible ways to erase PC main memory to fulfill object reuse

requirements. This can be done through software or by using specially designed

hardware. We are going to take look at these options and decide on the best one in terms

of practicality, cost effectiveness, and easy installation and administration.

59

1. Software Based Object Reuse Controls

In this section, software based object reuse control is intended to cover all of the

procedures used for erasing or overwriting the main memory by means of code executed

by the TCBE CPU.

a. Selectively Overwriting the Parts of the Memory from the TCBE

(1) Concept of technique: Main memory can be selectively

overwritten using a software-controlled mechanism. If the TCBE is able to take control of

the bus as the bus master, it can write random bit patterns over the predefined address

regions of memory. As seen in Figure 4.1, the TCBE will overwrite the shaded areas and

leave the areas defined as configuration data, unchanged. This is accomplished by using a

software routine, to be initiated by the TCBE, when memory purges are required. This

routine will reside in the memory of the TCBE since the memory unit will be battery-

backed.

Blocks of main memory can be overwritten by memory access

from the TCBE CPU or by establishing dynamic memory access (DMA), via the DMA

controller. In the DMA access, the TCBE provides the starting address of the block, the

amount of the data to be overwritten and the data to be copied. When this type of access

is initiated the blocks of memory will be overwritten by the DMA controller in the TCBE

without the participation of the TCBE CPU. The difference between DMA access and

direct CPU memory access is that DMA provides block access while direct CPU access

provides line by line access.

60

The configuration data is the information gathered about the PC

system and its components for the system to operate most efficiently. The system saves

this information into the main memory to provide fast and easy access when this

information is needed.

In this method we want the configuration data to be preserved so

that the computer doesn't have to spend extra time to gather all the configuration

information.

MEMORY

Configuration data

Configuration data

Configuration data

Configuration data

Configuration data

Configuration data

Figure 4.1 selectively overwriting the memory

(2) Advantages and disadvantages: The use of the software

oriented controlling will bring flexibility to the design of the TCBE. It is easy to install

and configure a software-based control system.

61

Since the configuration data preserved in the memory by the

system is predefined, the overwriting process will be applied only to memory regions,

which do not contain the configuration information. This way the overwriting process

won't affect the configuration regions and the configuration data will be preserved.

No extra hardware is needed. The only hardware required is that

already planned for the TCBE: memory and its processor. This will keep the TCBE

hardware design simple and cost effective.

There are several disadvantages to this approach. The first is that

writing over the memory is a time consuming process. It takes many bus cycles to

overwrite large portions of memory. Consider a PCI bus operating with a bus speed of

100 MHz. Even when the latency caused by the memory components and the PCI

protocol is neglected, assume that every clock cycle we can write 4 bytes (32 bit data

bus) each clock cycle, which means zero latency, into a memory block of 128Mb. This

means that we can write over the whole memory in 0.32 seconds. Which is a big amount

of time considering with the usual PC operating speed. The total time for the overwriting

process will even get close to half second if we consider the approximate additional effect

of latency caused by the hardware components such as arbitration, wait states, repeat

cycles, buffering, etc.

Another disadvantage is the possibility that the configuration data

space might be used by malicious application code to store information. So that sensitive

information can be carried from one session to another session.

Bus arbitration presents another problem. Bus ownership may not

be continuous during the memory overwrite process. Guaranteed bus ownership (atomic

62

bus ownership) is needed. Atomic bus ownership doesn't seem to be very possible since

there are other hardware-oriented factors such as the non-maskable interrupts. For

example, if a non-maskable interrupt (such as a reset signal) is issued, it has to be

serviced by the system CPU. This will cause all bus transactions to cease. Another

reason for losing bus ownership is expiration of the arbitration time, thereby bus

ownership passes to another bus master. This puts control of object reuse for memory in

jeopardy.

Also after the overwriting process has completed, no untrusted

application should be allowed to run before the new session is established. The untrusted

application may access the main memory and write information in it making the whole

overwriting process useless.

b. Overwriting the Whole Memory from the TCBE

(1) Concept of technique: By using a software-only mechanism the

whole main memory can be overwritten. The overwriting software will reside in the

memory of the TCBE. When the TCBE acquires bus ownership, it will write a random bit

pattern into memory. This process can use either a direct memory access or DMA-

oriented I/O access.

63

/ MEMORY
Configuration data

Configuration data

Configuration data

Configuration data

Configuration data

Configuration data

Figure 4.2 overwriting the whole memory

(2) Advantages and disadvantages: In this approach no extra

hardware is required. This will keep the TCBE hardware design simple and cost

effective.

It is easy to install and configure a software based control system.

The use of software oriented control will bring flexibility to the design of the TCBE.

Overwriting all of memory will eliminate the problem of malicious

code trying to pass information between sessions by using the configuration space

mapped into the memory.

A disadvantage of this method is that the configuration data will be

lost since the whole memory is overwritten. This will require another configuration

process by the system at the next session, which will consume time.

64

Also, overwriting memory is time consuming, as we investigated

in the previous section, and it will cause delays between session changes.

The other problem is the bus arbitration problem. Bus ownership

may not be continuous during the memory overwrite process. Guaranteed (atomic) bus

ownership is needed. Atomic bus ownership doesn't seem to be very possible since there

are other hardware-oriented factors such as the non-maskable interrupts. If a non-

maskable interrupt (such as a reset signal) is issued, it has to be serviced by the system

CPU. This will cause all the bus transactions to cease. Another case for losing bus

ownership is when the arbitration time expires thereby passing bus ownership to another

bus master.

The overwritten area should be write-protected to prevent a

secondary write, which can be initiated by malicious software to write sensitive

information back into memory again, during or after the overwriting process. This,

process is like picking up marbles from the carpet before the vacuum cleaner sweeps the

carpet and dropping them on the floor again following right behind the vacuum cleaner.

Also after the overwriting process no untrusted application is allowed to run before the

new session is established.

c. Memory Controller Reconfiguration by TCBE

(1) Concept of technique: DRAM memory cells are made of

capacitors. Each cell defines one bit with a logical value of one or zero. The logical value

of a memory cell, whether it is a logical zero or logical one, is defined by measuring the

voltage level in the cell. The memory cell cannot hold the voltage at a constant level for a

65

sustained period of time. Eventually, the voltage level of the cell drops down. For

consistent data storage, the memory cell needs to be periodically energized (refreshed) to

preserve its voltage level. If DRAM cells are not refreshed every 64 milliseconds or

sooner, the data in this type of memory will be lost. Software may be used to reconfigure

the memory controller to regulate the DRAM refresh rate. Here the TCBE would use the

PCI bus communication protocols to control and communicate with the memory

(DRAM) controller device within the 82443BX Host/PCI bridge chipset.

In our prototype we have a single Host/PCI bridge. We need to

configure the memory (DRAM) controller on the chipset by writing the appropriate

configuration value to the configuration address port and the configuration data port,

which will be latched by the Host/PCI Bridge. After this, the bridge will arbitrate the PCI

bus and start a configuration write/read process. When the configuration address and data

are written to the configuration ports by the TCBE, the 82443BX Host/PCI Bridge is

triggered and it sets the appropriate configuration registers of the PCI device, in this case

those of the DRAM controller. If the PCI device is on the system PCI bus, the bridge will

arbitrate the bus to configure the PCI device.

66

Video
-DVD
- Camera
-VCR

-VMI
- Video Capture

JL.

Graphics
Device

Display

Encoder

Video BIOS

2X AGP Bus.

Graphics
Local Memory

2 IDE Ports
(Ultra DMA/33)

2 USB (USB,
Ports [USB.

. . Primary PCI Bus

(PCI Bus #0)

82371EB
(PIIX4E)

(PCI-to-ISA
Bridge)

System BIOs"|«-

I

System MGMT (SM) Bus

IO
APIC

ISA Bus

ISA Slots

DOM

Figure 4.3 clearing the memory via DRAM refresh rate configuration, after Ref. [4]

By writing appropriate data to the configuration registers of the

82443BX host-bridge, the DRAM controller can be configured so that it will stop the

DRAM refresh process and we can clear the memory.

The 443BX chip set uses the configuration access mechanism by

utilizing the CONFADD register and CONFDATA register. To reference a configuration

register, a double word I/O write-cycle is used to place the required information into the

CONFADD register. After this process any read or write to the CONFDATA register

leads to a double word PCI configuration access to the PCI device's configuration

address space, which is 64 double words (one word is 2 bytes) in size. [Ref. 4]

For the 443BX chipset, the I/O address for the CONFADD register

is 0CF8h and for the CONFDATA register it is OCFCh. To configure the DRAM

67

Controller for no refreshing (zero refresh), the value to be written into the configuration

address port will be 0x80000021 and for the configuration data port it will be

0x00000000. The configuration process has been explained in the previous chapter.

(2) Advantages and disadvantages: This method of erasure has the

flexibility of the software oriented system approach. It provides easy administration and

configuration of the system. No extra hardware is required and this will help to keep the

TCBE design simple and cost effective. This also indirectly provides easy hardware

installation to the client.

Clearing the memory is faster than sequentially overwriting it. The

DRAM main memory needs to be refreshed every 64 milliseconds and if the DRAM

controller doesn't provide this minimum refresh rate the data in the DRAM cells will

eventually be lost. The writing process takes a lot longer than this. As it is calculated

before, the memory overwriting process for a 128Mb, memory over a 100MHz. PCI bus

takes at least 0.32 seconds. By controlling the refresh rate of DRAM, the clearing process

is five times faster (0.32/0.064 = 5) than the overwriting process.

One of the disadvantages of this method is the bus arbitration

problem. Guaranteed bus ownership (atomic bus ownership) is needed until the zero

refresh configuration process is completed. Also, the continuity of the zero refresh

configuration needs to be preserved until the whole system is cleared and checksumed

(the next session). The zero-refresh configuration must be held at least 64 milliseconds.

Otherwise, if the zero-refresh configuration is changed back to the refresh mode before

the 64 milliseconds elapses, the memory cannot be cleared.

68

2. Hardware Based Object Reuse Control

a. Clearing the Memory by Making Direct Hardware Connections to

the Memory from the TCBE

(1) Concept of technique: The DRAM memory needs to be

refreshed to retain its data in the memory cells. The DRAM controller on the 82443 BX

host/PCI chipset controls the refresh process. For the refresh process to occur certain

signals must be supplied to the DIMMs. These signals are fed into the predefined pins of

the DIMM card.

Some of these signals are active high (3.3 volts) and some of them

are active low (0 volts), which means that the state of these signals provide the refresh

configuration information to the DRAM memory. The state of the refresh configuration

depends on the combination of assertion/deassertion of these signals. If we can block

these signals in a way to force the refresh rate to be zero we can prevent the refresh

process from happening causing the DRAM to be cleared. This way we can erase the

memory to provide object reuse control between sessions.

This requires a hardware mechanism. The basic functionality of the

hardware mechanism is to provide the required signals to the required pins. The signals

will be controlled by the TCBE. The derivation of the required signals to design the logic

circuit for providing the zero-refresh rate is given in Appendix A.

69

Oil -

UK -

CAS« •

SASi.

CONTROL
LOGIC

KOi)£ SEiSUR

'3>C ASMtiS
REOIMtR

«L

TCBE
Low signal >64ms

Low Signal (0 Volts)

/

hV ROW-
ADDRESS

MUX ^

SANK»
ROW-

ADDW»
1.ATCK

s
DKOCER

BANK
CONTÜOI

LOGIC

_dE

IF
BANKO

MEMORY
AR3AY

!i.0S6»i.tiM<a)

SLNSK AMPUfliftS -J

y^p^ P
VO GATING

DQMMAS* LOGIC
RKAtJDATAiATCH

WRITE DRIVERS

COLUMN
ADD3SS5
CCUMTES;

LATCH

r4

10»
(W) 55

COLUMN
DECODER

_*, DATA
OUTPUT

V| RcGKTEB

-/———Ö+— COM

bb

Figure 4.4 clearing the memory by using a direct hardware connection, after Ref. [23]

(2) Advantages and disadvantages: By making direct hardware

connections to the DIMMs we bypass all the rules enforced by the PCI bus architecture

and other system rules which limits our control over the memory. This method ensures a

guaranteed connection to the memory. This process is direct and is completely controlled

by the TCBE. The TCBE doesn't need to make any request to the system to take over

control. It simply overrides the system memory control signals. There is no other way to

avoid this process without direct physical access.

70

This process is very fast because we only need to supply the zero-

refresh signal for 64ms. Memory will loose all the information in it. It is faster than

overwriting all of memory. Since a hardware device residing on the TCBE originates the

mechanism and since the connections are not routed by using the system bus there is no

possibility of malicious software interference. Control remains within the TCB perimeter

at all times.

A disadvantage of this approach is the increased hardware

complexity of the TCBE. For every different hardware configuration involving the chip

set and the DIMM structure, a different hardware design will be required to accomplish

the same functionality. To provide easy installation a standard chipset and DIMM

configuration would be needed.

For different chipsets, a more general hardware design can be built

to provide compatibility for different hardware configurations, since the functionality is

just a matter of providing the appropriate signals to the DIMM to cause the termination of

the refresh process.

The increase in the complexity of the TCBE hardware design

resulting from the introduction of the extra hardware device will increase its cost.

b. TCBE Hardware-Controlled Partial Memory Clearing

(1) Concept of technique: Memory can be erased by making direct

hardware connections from the TCBE to the DIMM blocks. The refresh rate can be

controlled by the appropriate signals provided to the DIMM module from the TCBE by

intercepting the signals from the DRAM controller. A partial erasing process can be

71

achieved if the DIMM module-refresh process can be controlled separately. This is

possible if the refresh configuration allows existing regions of a certain size in the

memory module to be refreshed independently. This way clearing a desired memory

block would be possible.

This process may not be realized currently since the DIMM

technology doesn't provide the separate refresh controlling of the memory modules. The

ability to control the refresh rates of individual memory blocks will also improve the

object reuse control level on the memory by clearing the memory blocks separately. This

way any desired memory block or series of blocks can be erased providing the

configuration data to be preserved while the rest of the memory is wiped out. This can be

accomplished by using the same methodology in the previous concept of technique.

Figure 4.5 partial clearing of the memory

(2) Advantages and disadvantages: By making direct hardware

connections to the DIMMs we bypass all the rules enforced by the PCI bus architecture

and other system rules which limits our control over the memory. This ensures a direct

connection from the TCBE to memory so that we can be sure that the memory is erased.

72

Another advantage of this approach is that the configuration data

written to memory can be preserved, since we can selectively erase memory. This method

is faster than the one accomplished by software.

Besides having a more complex hardware design, a disadvantage is

the problem of a malicious code hiding the sensitive data into the configuration address

space. Malicious code may hide sensitive information in the system memory space

reserved for the configuration data at any time. Since the configuration data is preserved

in this method, sensitive data may be passed over to the next session via the system

memory. Also, we need to ensure that the cleared memory is not going to be used again

until the next session starts.

c. Powering off the Whole PC and Keeping the Power on the TCBE

(1) Concept of technique: We can turn off the power supply of the

whole PC so that all volatile storage including the main memory is erased. At the same

time we must still provide power to the TCBE so that it can maintain control. This can be

accomplished in two ways. Extra circuitry can be added to manage the power from a

single source, providing the required power to the TCBE and to the PC, as in Figure 4-6,

or the TCBE can be supplied with its own power supply, as in Figure 4-7.

73

Figure 4.6 TCBE sharing the same power supply

Figure 4.7 TCBE with its own power supply

(2) Advantages and disadvantages: Since the whole PC will loose

the power all the volatile storage areas will be cleared. This will ensure that memory is

erased and no sensitive data is retained in main memory between two sessions.

74

On the other hand, this process will be time consuming since we

have to power up the whole computer again. We have to wait for all the devices to come

alive.

Extra hardware is needed to manage the power requirements of the

TCBE residing on the motherboard. The required hardware design is likely to be

complex, decreasing the cost efficiency.

In the second power model, the extra power source will decrease

the cost efficiency more and the size of the PC module has to be increased to

accommodate this extra hardware.

3. Conclusion

From the arguments we made it can be seen that there exists two possible

solutions. One is the software solution of clearing the main memory by controlling the

DRAM refresh rate by configuring the 443BX-chipset DRAM controller. The second one

is the hardware solution of powering off the memory by making a simple direct hardware

connection to the DIMM units.

The software-oriented solution is more flexible and it has an easier installation

procedure than the hardware solution.

On the other hand there might be some problems with this scheme. One is bus

arbitration. The configuration program may not start or complete if another program

keeps or takes over the bus. The configuration sequence is a two-step process. First the

configuration address register needs to be written and after that the data configuration

register will be written. This sequence needs to be an atomic operation; otherwise

75

malicious software might monitor this configuration attempt. When the malicious

software sees that the address written into the configuration address register targets the

DRAM memory controller refresh rate; it may intercept the configuration process. This

way the configuration data may never be written with the zero refresh configuration

value. The atomicity may be accomplished by checking on the PCI signals provided

between the master and the target device. If a PCI transaction cannot complete, the reason

that completion is prevented will be signaled to the master device. If a PCI configuration

process is interrupted, the TCBE can check the specific status registers provided by the

PCI architecture to assure that the transaction is completed. If there is any problem with

the completion of the transaction, the TCBE will repeat the transaction until it gets

completed successfully.

The hardware-based solution is not as flexible as the software-oriented procedure

in the installation process. It needs extra installation effort and it may cause hardware

problems if not installed appropriately. But it still has operational flexibility since the

software can control it. This means that the hardware oriented refresh process can be

initiated and ceased via software control.

The hardware solution is bulletproof. Since we bypass the whole PC system and

directly control memory it cannot be circumvented by malicious code checking the PCI

bus for a configuration attempt by the TCBE. Also this process is faster than the software

version of it, as it has been noted earlier.

76

B. PENTIUM-II (400 MHZ) CACHE

1. An Introduction to Cache

Cache provides intermediate-level storage between system memory and the

processor. It consists of a small amount of fast-access, but costly memory. In contrast

DRAM system memory is both slower and larger. Cache is usually designed as static

random access memory (SRAM).

Most programs contain code loops that are executed many times and have data

structures that are accessed repetitively. In a situation like this the cache can dramatically

improve the system performance by reducing the data or code access time for the

processor. However if a program accesses code and data structures only once, there will

be no improvement provided by the cache system.

2. Cache Operation

As described in [Ref. 8] and [Ref. 9], cache is made of SRAM, which is high cost,

fast access memory. The cache controller keeps track of information, which has been

copied into cache memory.

The cache architecture exploits two characteristics of most of the programs:

temporal locality and spatial locality. Temporal locality addresses the notion that the

longer it has been since information in the cache has been accessed, the less likely that

information is to be used again. Spatial locality addresses the fact that programs are likely

to need code or data that are close to locations already accessed.

77

When the processor initiates a memory read cycle the cache controller first checks

the cache memory to determine whether the requested data exists in the cache or not. If a

copy is present, it immediately reads the information from the cache and sends it back to

the processor. This is called a read hit. This way the processor doesn't need to go to the

system bus and this prevents wait states. The data transfer can be completed with zero

wait states since the information is fetched from fast SRAM.

Usually cache works with the same speed as the core processor. If the cache

controller determines that the data requested by the core processor doesn't exist in cache

memory then the information must be read from DRAM memory, the system's main

memory. This is known as a read miss. The read miss causes wait states since the access

speed to DRAM memory is slower than the processor core speed.

When the requested information is sent from DRAM to the processor, it is also

copied into cache memory by the cache controller. The speed up effect of the cache

system becomes evident when programs, which have a lot of loops, are run. When a

program executes many loops and makes many accesses to the same data structures, the

system memory access time will dramatically reduce the speed of the program execution.

The cache helps to avoid expensive DRAM accesses. The processor can access all the

repetitive commands and data structures without needing any DRAM memory access.

78

System Bus

Figure 4.8 The Pentium II processor with cache and memory interfaces, after

Ref. [17]

3. Cache Architecture in the Pentium-II System

The size and the characteristics of cache are machine-specific and may change

from version to version. The Pentium II processor cache architecture consists of one

internal 16KB Level-1 data cache, one internal 16KB Level-1 code cache and an external

512KB Level-2 unified cache connected to the processor by the backside bus.

79

The Pentium II processor can simultaneously transfer data on both the backside

and front side (system bus) buses. The Intel Company calls this architecture as the Dual-

Independent Bus Architecture (DIBA).

The backside bus provides a dedicated path between the core and the L2 cache.

The Pentium II processor's backside bus is physically long. This slows down the

backside bus speed. The backside bus operates at one half of the processor core speed.

On the other hand, since the LI cache capacity is doubled regarding to the Pentium Pro

(P6) processor architecture, which reduces requirements for L2 level cache access.

The Pentium II processor also provides Error Correcting Code (ECC) protection

both the L2 cache and the LI caches.

The LI data cache is 16KB, 4-way set associative with a 32-byte line size. This

means that the cache look-up process is done as a set of four cache entries each of which

is 32-byte in size. The LI code cache is 16KB, 4-way set associative with a 32-byte line

size. The unified, L2 cache is 512KB, 4-way set associative with a 32-byte line size. The

cache structure uses a look-through type of caching. This means that the processor will

first check the cache structure and then it will decide to access the system memory since

the address that it has been looking for doesn't exist in the cache memory. The

simplified block diagram of the Pentium-II processor cartridge is as given below.

80

Local
APIC <—►

PENTIUM-II
CORE

16KB
LI Data
Cache

16KB
LI Code

Cache

Bus Interface Unit

512KB
Unified L2 Cache

Backside
Bus

External Bus

Figure 4.9 Simplified Logical Block Diagram of the Pentium-II Processor Cartridge,

from Ref. [8]

The algorithm used for the replacement of the lines in the cache is a pseudo least

recently used (LRU) algorithm. Simply put, the lines which are used the least are

replaced when there is a need for a new space in the cache structure.

The L2 cache is physically consisted of five SRAM modules. These modules are

on the same card, called the substrate, with the processor. There are four SRAM data

modules and one L2 cache tag SRAM module.

81

4. Need for Object Reuse Control on Cache

In an MLS system resources are shared under the control of the system. Object

reuse must be controlled on the client system. The cache memory is one of the main

storage objects in the client computer. We want object reuse control over the cache to

prevent any sensitive information leakage between two sessions.

5. Object Reuse Control of Cache

In this section possible ways of removing the information stored in the cache

between sessions are discussed. The concepts are derived from the information

documented in the Pentium II publications from the Intel Company. Other object reuse

techniques for cache might be possible but detailed knowledge of the cache from Intel-

internal documents would be needed and this information is proprietary.

a. Cache Overwrite

(1) Concept of technique: After the main system memory is

cleared by the TCBE, the CPU needs to be restarted since it will have been halted. When

the reset signal is applied to the Pentium-II by the TCBE to restart the halted CPU all

cache data is marked as invalid.

The TCBE can make the CPU run a program, which accesses

memory locations non-repetitively, which means that each memory read access must be

done to each memory address location only once. Since the cache system is based on the

temporal locality and spatial locality principles the cache controller immediately fetches

82

information accessed by the processor into cache memory. At that moment the memory

contains meaningless random values because it has been cleared by the TCBE. This way

the old cash can be overwritten by random values from the memory, leaving the cache

memory useless for the information leaking attempts.

In the same way the memory can be written with a known bit

pattern such as all ones or all zeros. This way the cache can be filled with predefined bit

pattern.

(2) Advantages and disadvantages: The advantage of this system is

that the cache memory can be initialized with known values such as all ones or zeros so

that the system always starts with a known cache state. Making the Pentium II processor

write a known data pattern into the memory can accomplish this process.

On the other hand, a disadvantage of this method is that

overwriting the memory is time consuming and it will cause delays between session

changes. The cache overwriting process will be slow since the Pentium-II cache utilizes

look-through type of caching. In a look through type design the host processors memory

access requests are first submitted to the look through cache to determine if copy of the

target address line exists in the cache. This will incur a look up penalty, in the event of a

cache miss, causing an extra delay.

b. Cache Clearing

(1) Concept of technique: The caches can be cleared by using the

Invalidate Internal Caches (INVD) command. This command flushes the processor's

internal caches, the LI code cache and the LI data cache. It also issues a special-function
83

bus cycle, which also flushes the external L2 cache. The data held in the internal caches

will not be written back to main memory. The INVD instruction is a privileged

instruction. The current privilege level of the program or procedure must be 0 to execute

this instruction. Data cached internally and not written back to memory will be lost.

(2) Advantages and disadvantages: The advantage of this method

is that it won't take as much time as it takes to write into memory. This process is

initiated by a command, INVD, and the rest of the process is completed by the hardware.

One side effect of this method is that it is not clear what the state

of data in the cache will be after the cache is flushed by the INVD command. It could be

zeros or all ones or both of them in random order in cache memory. The Intel literature

doesn't document the state of the cache memory after the INVD command is executed

but does state that all the data in the cache memory will be lost after the execution of the

INVD command.

On the other hand there might be some side effects with this

scheme. Intel states that the INVD command will cause the data in the cache to be

cleared. However it is not clearly documented what the data values in the cache will be

after this flushing process. If the state of the cache needs to be known, the proposed

methods in section one and section two can be executed together. First the INVD

command can be used to flush the cache and then the memory writing process can be

accomplished to overwrite the cache, so that the cache data values can be set to a known

state of value.

84

We need to be sure that either the cache is really overwritten or the

INVD command is really executed by the CPU. These processes should be initiated by

the TCBE, so it has to be the bus master of the PCI transaction for these processes. PCI

bus ownership must be guaranteed to ensure a continuous transaction. If the transaction is

interrupted by malicious software the TCBE will know that the PCI transaction couldn't

be completed and it must retry the transaction. A single atomic total transaction for object

reuse control would be appropriate.

6. Conclusion

From the arguments above, it can be seen that there exist two possible solutions to

provide object reuse control over cache. One is to overwrite the cache by making the

Pentium II processor write to system main memory. The second is to directly flush the

cache memory by making the Pentium II processor execute the INVD command.

The second solution is faster than the first one since there is no system main

memory access required to overwrite the cache. This process can be accomplished over

the backside bus and the internal bus of the Pentium II processor but not the system PCI

bus, which is relatively slower.

85

C. OBJECT REUSE CONTROL OF ACCELERATED GRAPHICS PORT AND

REAL TIME CLOCK RAM

Another two of the significant storage areas in the PC are the accelerated graphics

port (AGP) RAM and the real time clock (RTC) RAM. In this chapter each of these

storage areas will be investigated to find a solution for their object reuse.

1. AGP RAM

The AGP interface for the PC passes through the 82443BX Host/PCI Bridge. The

82443BX doesn't support the existence of any other I/O devices beside itself on the CPU

bus. This means that all I/O requests passing through the 82443BX are controlled by this

chipset.

The 82443BX generates either PCI or AGP bus cycles for all I/O accesses

initiated by the CPU. The I/O accesses, other than ones used for PCI configuration space

access, are normally forwarded to the PCI bus unless they fall within the PCI-1/AGP I/O

address range. When the CPU initiates an I/O cycle targeting the AGP I/O address range,

the 82443BX directs these non-memory (I/O) accesses to the AGP bus interface.

The PCI interface for an AGP card residing on the PCI bus is as follows. The

82443BX accepts all memory-read and write accesses to main DRAM. The memory-

write accesses to the AGP memory range are acknowledged, however, the 82443BX will

not respond to memory read accesses in this range. Memory-read and write accesses are

allowed to the Graphics Aperture, which is located in the system main memory. PCI

accesses that fall elsewhere within the PCI memory range will not be accepted.

86

There are separate rules for AGP interface decoding regarding the AGP card

residing on the AGP bus. If the cycles are initiated by using the PCI protocol on the AGP

bus, accesses between AGP and PCI devices are limited to memory writes. Write cycles

are forwarded to the PCI bus if the addresses are not within main DRAM range, AGP

memory range or Graphics Aperture range. The 82443BX chipset claims AGP initiated

memory read transactions decoded to the main DRAM range or the Graphics Aperture

range, both of which reside in the system main memory. All other memory read requests

would be master-aborted by the AGP initiator as a consequence of the 82443BX not

responding to a transaction. If an agent on AGP issues an I/O, PCI Configuration or PCI

Special Cycle transaction, the 82443BX chipset will not respond and the cycle will result

in a master-abort.

For cycles initiated by using the AGP protocol, all must reference main memory

range, main DRAM address range or Graphics Aperture range. Graphics Aperture range

is also physically mapped within DRAM, but it uses a different address range. In this

transaction, the bus master is the AGP accelerator.

Consider the scenario for malicious code trying to pass information from one

session to the other by using the AGP RAM. The code will try to write the sensitive data

into AGP RAM. In a new session, it will try to extract the data from the AGP RAM.

Consider the possible actions that the malicious code can take. It can write into the AGP

RAM by via the PCI protocol. In the AGP protocol, the only master is the AGP card, so

the malicious code would have no control of any read or write process, assuming that the

AGP card is a good and trusted card. When the malicious code tries to read from the AGP

RAM via PCI protocol the transaction will be master aborted since only main memory
87

range or Graphics Aperture range, also physically mapped within main memory, read

access is allowed by the 82443BX chipset.

When the 82443BX Host/PCI AGP bridge access decode rules are analyzed for an

AGP card residing on the AGP bus, it can be concluded that a PCI bus master can not

accomplish a successful read access to the target AGP card, by using either PCI or AGP

access protocol. Thus, it can be said, that even if a malicious program writes sensitive

data into the AGP local memory region, this information cannot be read back out, thereby

eliminating object reuse considerations.

Malicious code may write data into the AGP local memory in an appropriate

format with the intent for putting this sensitive information on the client display unit.

Good protection against this threat would be to flush the displayed sensitive information

by writing predefined display data to the whole local memory buffer from the TCBE at

the beginning of the new session. This way, the old display values would never be seen in

the new session.

88

System RAM to Bad
("Execute") j&PPU

Frame ___ If " '
Buffer -' " "^""---1, I '..System

i""""^. Memory

Figure 4.10 The generic AGP bus relation with the rest of the system from Ref. [53]

2. RTC RAM

The Real Time Clock (RTC) module is located in the 82371 AB (PIIX4) PCI/ISA

accelerator and provides a date-and-time keeping device with alarm features and battery

backed-up operation. The position of the PIIX4 in the logical organization of the PC

system is shown in Figure 4.11.

The RTC counts seconds, minutes, hours, days, and day of the week, date, month

and year with leap year compensation.

The RTC module contains 256 bytes of battery-backed static RAM (SRAM) in

two banks, namely, the standard bank and the extended bank. The first 10 bytes of the

standard bank contain the time and date information. The next 4 bytes are used as four

control registers (A, B, C, and D) to control the operation of the RTC. The rest of the 114

89

bytes are used as general purpose RAM. The extended bank has 128 bytes used as

general purpose RAM. These general-purpose storage areas are used for preserving the

configuration information such as boot order information, device configuration data, etc.

Processor

Host Bus ■
4 i

"
Host-to-PCI

Main
Memory
(DRAM)

Second Level
Cache Bridge

^ PCI Bus (3.3V or SV. 30V33 MHz)

Hard
CD ROM Disk

o—o-

1

BMI IDE
Ultra DMA/33

Hard
Disk o

82371AB
(PIIX4)

ISA.CIO Bus
(3.3V: 5V Tolerant) I

PCI Slots

USBJ;

* ►CuSB_£>

* / > GP[I.O] (30*)

-► SMBus

Audio

T"
KBD

T

SP. PP.
FDC, IR

A
BIOS

T"

Figure 4.11 Position of the PIIX4 in the logical organization of the PC from Ref. [5]

Time, calendar and alarm can be represented in either binary or Binary Coded

Decimal (BCD) format. The hour can be represented in 12 or 24-hour format. The RTC

module requires an external oscillating source of 32.768 KHz. This clock signal is

divided down to 1 Hz. Signal.

All data movements between the host CPU and RTC are done through registers

mapped to the ISA I/O space at locations 70-73h. The standard RAM bank is accessed

through the registers at I/O addresses of 70h and 71 h. For the extended RAM bank, the

ISA I/O address 72h is used as the address pointer and ISA I/O address 73h is used as the

90

data register. Only PCI masters can access the internal registers. ISA master access is not

supported.

ACCESS TO
STANDART
RAM VIA

ISA I/O

Address port
70h

Data port 71h

ACCESS TO
EXTENDED

RAM VIA
ISA I/O

Address port
72h

Data port 73h

10 Bytes

4 Bytes

114 Bytes

128 Bytes

Time & Date

Configuration registers A. B, C, D

Standard RAM

General purpose RAM

Extended RAM

Figure 4.12 The access ports for the RTC module

An update cycle occurs once every second. During this procedure the stored time

and date are incremented, overflow checked for the upper limit number value, a matching

alarm condition is checked, and the time and date are rewritten to the RAM locations.

91

The real time clock configuration register (RTCCFG) is used to configure the

internal real time clock. The first and the third bits of this register are used to configure

the availability of the RTC RAM.

The RTC battery backed RAM supports two 8-byte ranges that can be disabled

via RTCCFG. In this way, these memory locations cannot be readable or writable. The

same enable and disable process can be done to the standard and extended memory

ranges. A write cycle to these locations has no effect. A read cycle to these locations does

not return the actual location value. RTCCFG is a write-once register. Once enabled

anytime after the boot process, this function can only be disabled by a hard reset. It is not

possible to reset this register by software means.

As the first solution for providing object reuse control for this memory region, the

TCBE can read RTC and configuration values into its memory and then lock the standard

and extended RAM banks before the operating system is given control. This way any

write or read attempt to the RTC RAM can be prevented. After this, the TCBE may

provide the system with the time and configuration values. This can be done by running a

daemon watching the ISA I/O address references and then emulating the ports. This

requires the TCBE to watch over the O/S at all times. If the TCBE has a snooping

capability as the CPU does, then this may be done. This way, any read access targeting

the specific port addresses can trigger the TCBE and the TCBE may provide the

requested values. This may not be possible with the current commercial PCI add-on cards

but this idea will provide another insight for the solution of this problem and it may be

realized in the future.

92

The second solution for object reuse control is that RTC memory can be read

back to the TCBE and after the session the read information can be written back to RTC.

This way any possible sensitive information kept in the RTC RAM would be overwritten.

After the write back process, the RTC RAM should be locked so that a malicious

program can do no re-writing.

Even if the configuration information were changed during the session,

overwriting these configuration data would not be a problem since every new session will

start with a pre-defined configuration. On the other hand, the write back process should

be atomic so that it can be completed uninterrupted. This way we can be sure that we

have really accessed and overwritten the whole RTC RAM.

As the third solution, with the time information excluded, RTC memory can be

checksummed at the beginning of each session and the checksum value can be kept in the

TCBE. At the end of a session, comparing the checksum value can ensure the integrity of

the RTC RAM area. If the checksum value doesn't compare, then the TCBE can give a

warning and freeze the system or can overwrite the RTC RAM with the appropriate

configuration values. This action can be determined according to the security policy

enforced by the system.

The fourth solution differs slightly from the third, and requires that the default or

approved RTC RAM values or checksum be kept in the TCBE at all times. This way the

RTC RAM area can be checked at the end of the session. This method prevents extra

checksum calculations at the beginning of every new session. Since there is not

93

checksum process involved at the beginning of the session, the new session establishment

can be faster.

To conclude, using the second and fourth solutions would yield the desired object

reuse control.

94

V. EXPERIMENTATION

In this chapter we will explain an experiment to prove the feasibility of solution

number two, TCBE read and write access to RTC RAM, and solution number four, RTC

RAM checksum control by TCBE, which are discussed in chapter six section-B.

A. HYPOTHESIS

The Intel i960 PCI board, the prototype TCBE, can access the RTC RAM and

commence read and write operations on this memory region.

B. DESIGN OF EXPERIMENTATION

The Intel i960 is a PCI board, which can access the PCI bus of the client PC. This

board can initiate PCI transactions as a bus master on the PCI bus of the client. The RTC

RAM, on the other hand, resides on the ISA bus hosted by the south bridge (PIIX4). The

logic diagram for the relation between the PCI and ISA buses is given in Figure 4.11.

The purpose of this experiment is to reach the PCI bus as the bus master via the

i960 board, then to go through the ISA bus via the south bridge, and access the RTC

RAM.

C. IMPLEMENTATION

First we need to initialize the input/output configuration values. Then we will

access one of the locations in RTC RAM. We will read the byte value ofthat location and

store it in one of the global registers in the i960 board, thereby showing that the TCBE

will be able to read and store the configuration values from the RTC RAM. Following

95

this simulation, we will write to that address location in RTC RAM as if malicious code

in the PC had written to the RTC RAM in order to leak sensitive information to another

session level. Then, we will read back the value of the RTC RAM, simulating that the

TCBE reads the data on the RTC RAM in order to perform integrity check such as

comparing, check-summing etc. Next, we will write the original value, which was kept

in i960, back to the memory location in RTC RAM, see Figure 5.1. This simulates that

the TCBE overwrites the sensitive information rendering the efforts of the malicious code

worthless.

RTC RAM

Step 1 .Read value (01010101)
 _ fe

I960

Memory location

Original value
(01010101)

Modified value
roooomn

01010101 (Step 1)
Step2.Write value (00001111)

00001111 (Step 2)

Step3.Read value (00001111)

00001111 (Step 3) <- w

Step5.If NO match, write
oacK original vaiue / step 4. v

-* ^uiiiuoic values ■^

Figure 5.1 The flow of the experiment

96

The assembler code, which accomplishes these actions, is given in Table 5.1

.text

.globl jmain

_main:

Ida 0x90000070, gO /* loads the address port value for I/O */

Ida 0x90000071, gl /* loads the data port value for I/O */

Ida 0x0000000e, g2 /* loads the byte location of the RTC RAM value */

stob g2, (gO) /* stores the location of the RTC RAM value into the I/O

address port */

ldob (gl), g3 /*gets the original value in the RTC RAM from the data

port */

Ida 0x00000099, g5 /* loads the value to overwrite the original data into the

RTC RAM from the data port */

stob g2, (gO) /* stores the location of the RTC RAM value into the I/O

address port */

stob g5, (gl) /*change the original RTC RAM value to 99h*/

stob g2, (gO) /* stores the location of the RTC RAM value into the I/O address

port*/

ldob (gl), g6 /* gets the modified value in the RTC RAM from the data port */

97

stob g2, (gO) /* stores the location of the RTC RAM value into the I/O

address port */

stob g3, (gl) /*writes the original value back to RTC RAM */

stob g2, (gO) /* stores the location of the RTC RAM value into the I/O address

port */

ldob (gl), g6 /*gets the original value from the data port for confirmation*/

forever:

b forever /* loops forever */

Table 5.1 Assembler code for simulation of object reuse control in RTC RAM

D. EXPERIMENTATION DATA

For this experiment, the required data values are as given below:

The Primary outbound I/O window address for the RTC RAM address port:

0x90000070

The Primary outbound I/O window address for the RTC RAM data port:

0x90000071

The RTC RAM memory location address: OxOOOOOOOE

98

E. CONCLUSION

It is possible to access RTC RAM memory from the TCBE by implementing the

code described above. The access to RTC RAM will provide the TCBE with the ability to

control the contents of this memory region. By controlling this memory region, the

TCBE will also have object reuse control of this battery backed non-volatile storage area

in the client PC.

In addition, there is an Address Translation Unit Status register embedded in the

i960 board. This status register can be used to detect any interruptions of the I/O cycle to

provide atomicity to the transaction.

99

THIS PAGE INTENTIONALLY LEFT BLANK

100

VI. CONCLUSION

A. SUMMARY

The main purpose of this study is to contribute to the realization of a multilevel

secure local area network (MLS-LAN). The system consists of a high assurance, Trusted

Computing Base (TCB) that acts as a server. Clients consist of COTS workstations and

software, augmented with a Trusted Computing Base Extension (TCBE). The Object

reuse mechanisms are designed to assure that the user (subject) of the system doesn't

obtain residual information from system resources.

In chapter one, we introduced object reuse and the need for object reuse in secure

systems. In chapter two, we investigated the storage areas on the SOYO SY-6BE+ type

motherboard, which hosts an Intel Pentium II 400MHz CPU and Intel 440BX AGPset

consisting of the 82443BX Host Bridge and the 82371EB PIIX4E. With this investigation

we determined the devices with storage areas and we picked the main storage areas for

object reuse control analysis.

In the third chapter, we walked through the PC boot process and reviewed

important issues in the PCI protocol. These will be helpful in finding solutions to provide

object reuse control for the main storage areas.

In the Chapter IV, we proposed and evaluated possible solutions for the object

reuse control of main storage areas in the PC.

101

In the fifth chapter, we provide detailed information about an experiment that was

conducted in order to prove the feasibility of one of the proposed solutions for object

reuse control of RTC RAM.

B. RECOMMENDATIONS FOR FUTURE WORK

In the future, efforts to accomplish the miniaturization, for example VLSI level

design, of selected TCBE components or functions may be considered.

In this study we did not investigate areas with small amounts of storage areas, for

example those just a couple bytes in size. These include the internal CPU registers and

the registers on other chips such as W83781D / 836AC Winbond Hardware Monitoring

IC.

We couldn't investigate certain elements because of proprietary or unavailable

documentation. In this study, we pointed out these elements for future object reuse

control efforts.

The behavior of the PC needs to be experimented with when the memory is

cleared or overwritten. Will the CPU halt, and if it halts, can it be recovered by a reset

signal applied by the TCBE? If the CPU halts, will the DRAM controller be functional

and allow the TCBE access to main memory to ensure that main memory has been really

erased? While the CPU is halted, can the TCBE access the CMOS RAM and accomplish

read and write operations? Are there any side effects caused by clearing the memory

DIMM modules by making a direct hardware connection from the TCBE, as it is

proposed in Section 2.a in Chapter IV? Can the i960 board be connected to an external

102

power source other than the one provided via PCI interface? These questions can also be

addressed in future studies.

Our study can provide a basis for future object reuse control studies. It can

provide insights for new hardware or software designs that have built-in object reuse

control, such as new trusted operating systems or object reuse free motherboards and

compatible peripherals such as sound cards, AGP cards, SCSI cards etc.

C. CONCLUSION

In this study we proposed different object reuse control solutions for different

devices and we proved the feasibility of one proposed solution. This study establishes a

foundation for object reuse control efforts targeting COTS PC products manufactured by

various vendors. This study also provided information for the design specifications of the

TCBE and will hopefully lead to the use of highly secure systems with low cost and easy

installation throughout the government and military services.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX A. DESIGN CALCULATIONS FOR ZERO REFRESH

The derivation of the required signals to design the logic circuit for providing the

zero-refresh rate is given below

NAME (FUNCTION) CS# RAS# CAS# WE# DQM ADDR DQs

COMMAND INHIBIT (NOP) H X X X X X X

NO OPERATION (NOP) H H H X X X

ACTIVE (Select bank and activate row) L H H X Bank/Row X

READ (Select bank and column, and start READ burst) H L H L/H8 Bank/Col X

WRITE .(Select bank and column, and start WRITE burst) H L L L/H8 Bank/Col Valid

BURST TERMINATE H H L X X Active

PRECHARGE (Deactivate row in bank or banks) L H L X Code X

AUTO REFRESH or SELF REFRESH
(Enter self refresh mode)

L L H X X X

LOAD MODE REGISTER L L L L X Op-Code X

Write Enable/Output Enable - - - - L - Active

Write Inhibit/Output High-Z - - - - H - High-Z

Table A. 1 The truth table for SDRAM commands from Ref [23]

Note: H = logic 1, L = logic 0, X = logic 1 or logic 0

When the DRAM is in power down state, no refreshing process takes place. If

DRAM remains in this state for more than 64 milliseconds, data loss occurs.

The power down state results from either of two conditions. First, when the

DRAM control logic unit (see Figure 4.4) receives clock enable signal low (CKE = 0)

along with the No Operation (NOP) command. Second, when the DRAM control logic

unit receives CKE signal low (logic 0) along with the Command Inhibit (CI) command.

Table A.l shows the signal combinations required for initiating the CI and NOP

commands. So we need to make a logic analysis to determine the simplified logical

function in order to put the DRAM into power down state.

The logical expression of the requirements for the power down state is as follows:

105

F = Power down

N = NOP command

C = CI command

A = CKE, B = CS#, C = RAS#, D = CAS#,

E = WE#, F = DQM#, G = ADDR, H = DQs

F = N + C
Logic 1

N = A (B (C+C) (D+D) (E+E) (F+F) (G+G) (H+H))

N = AB

C = A (B (C+C) (D+D) (E+E) (F+F) (G+G) (H+H))

C = AB

F = N + C = AB + AB = A(B+B) = A_=CKE

After we simplified the logic function we determined that to put the DRAM into a

power down state, the TCBE is required to provide a logic zero signal to the CKE pin

(pin 37) [Ref. 23] of the DRAM module.

106

LIST OF REFERENCES

1. Croucher, Phil, The BIOS Companion, Advice Press, Palo Alto, CA, December
1998.

2. Barry, Kauler, Windows Assembly Language and Systems Programming, R&D
Books, Emeryville, CA, 1997.

3. Intel, Intel 440BXAGP set design guide, Intel corporation, Mt. Prospect, IL, April
1998.

4. Intel, "82443 BX Host/PCI AGP Controller", www.intel.com, April 1998.

5. Intel, "82371 AB", www.intel.com, April 1997.

6. Shanley, Tom, Plug and play system architecture, MINDSHARE, INC., Reading,
Massachusetts, August 1999.

7. Shanley, Tom, protected mode software architecture, MINDSHARE, INC.,
Reading, Massachusetts, December 1998.

8. Shanley, Tom, Pentium pro and Pentium II system architecture, MINDSHARE,
INC., Reading, Massachusetts, September 1999.

9. Shanley, Tom, and Anderson, Don, Pentium processor system architecture,
MINDSHARE, INC., Reading, Massachusetts, January 1998.

10. Shanley, Tom, and Anderson, Don, PCI System Architecture, MINDSHARE,
INC., Reading, Massachusetts, September 1999.

11. Solari, Edward, and Willse, George, PCI Hardware and Software Architecture &
Design, Annabooks, San Diego, CA, November 1998.

12. Shanley, Tom, and Anderson, Don, ISA system architecture, MINDSHARE,
INC., Reading, Massachusetts, September 1999.

13. Dzatko, Dave, AGP system architecture, MINDSHARE, INC., Reading,
Massachusetts, December 1998.

14. Intel, Intel architecture software developer's manual volume-1, #243190-001,
Intel Corporation, Mt. Prospect, IL, 1997.

15. Intel, Intel architecture software developer's manual volume-2, #243191 -001,
Intel Corporation, Mt. Prospect, IL, 1997.

107

16. Intel, Intel architecture software developer's manual volume-3, #243192-001,
Intel Corporation, Mt. Prospect, IL, 1997.

17. Intel, Pentium IIProcessor Developer's Manual, #243502-001, Intel Corporation
Mt. Prospect, IL, 1997.

18. Intel, Pentium IIProcessor Specification Update, #243337-029, Intel
Corporation, Mt. Prospect, IL, August 1999.

19. Holtek Semiconductor Inc., "HT27C512 OTP CMOS 64K' 8-Bit EPROM",
www.holtek.com.tw, May 1999.

20. Holtek Semiconductor Inc., "HT82V167/HT82V168 VCD+ A/V DECODER",
www.holtek.com.tw, March 1999.

21. Intersil, "HA-5002", www.intersil.com, November 1998.

22. National Semiconductor Company, "LM2635", www.national.com, November
1999.

23. Micron Semiconductor Products Inc., "MT48LC8M8A2",
www.micron.com/mti/msp/html/datasheet.html, November 1999.

24. Fairchild Semiconductor, "74F174", www.fairchildsemi.com, July 1999.

25. Philips Semiconductors, "74HC/HCT74",
www-us.semiconductors.philips.com, February 1998.

26. Philips Semiconductors, "74LV244",
www-us2.semiconductors.philips.com, May 1998.

27. Fairchild Semiconductor, "DM7407", www.fairchildsemi.com, March 1998.

28. Fairchild Semiconductor, "DM74ALS00A", www.fairchildsemi.com, February
1998.

29. Fairchild Semiconductor, "DM74ALS05A", www.fairchildsemi.com, February
1998.

30. Fairchild Semiconductor, "DM74ALS08", www.fairchildsemi.com, February
1998.

31. National Semiconductor Company, "LM555/LM555C", www.national.com May
1997. '

32. Motorola, "MC54/74HCT14A", www.motorola.com, October 1995.
108

33. Cypress Semiconductor Corporation, "W40S11 -23", www.cypress.com,
September 1999.

34. Winbond Electronics Corporation, "W83 781D", www.winbond.com.tw,
November 1997.

35. Integrated Technology Expressjnc, "IT8687R", www.ite.com.tw, March 98.

36. Integrated Technology Express,Inc, "IT8671F/ IT8671RF/ IT8671R",
www.ite.com.tw, March 98.

37. Intel, "Pentium II Processor at 350 MHz, 400MHz, and 450MHz",
www.intel.com, 1998.

38. Phoenix Technologies Ltd., "CMOS Setup Utility User's Guide for Intel
82440BX AGP set", www.phoenix.com, January 1999.

39. Phoenix Technologies Ltd., "Award Bios Version 4.51PG Post Codes & Error
Messages", www.phoenix.com, January 1999.

40. Phoenix Technologies Ltd., "Phoenix Bios 4.0 Release 6.0.51PG Post Tasks &
Beep Codes", www.phoenix.com, 1997.

41. Catalyst Semiconductor Inc., "CAT93C46/56/57/66/86", www.catsemi.com,
February 1998.

42. Linfinity, "LX5115", www.linfinity.com, November 1999.

43. Intel, "ATX Specification", www.intel.com, 1998.

44. Soyo Computer Inc, "6BE+ 82440 BX PCI Mainboard Users Guide & Technical
reference", www.soyo.com.tw, April 1998.

45. Soyo Computer Inc, "6BE+ 82440 BX PCI Quick Start Guide",
www.soyo.com.tw, September 1998.

46. Intel, "Accelerated Graphics Port Interface Specification", www.intel.com, May
1998.

47. Intel, "I960 RM/RN I/O Processor Developer's Manual", www.intel.com, July
1998.

48. Intel, "I960 Processor Assembler User's Guide", www.intel.com, December
1997.

49. Intel, "80960RM I/O Processor", www.intel.com, August 1998.
109

50. Intel, "gdb960 User's Manual", www.intel.com, December 1997.

51. Common Criteria for Information Technology Security Evaluation (CC 2 1)
CCIMB-99-031, August 1999.

52. Department of Defense Trusted Computer System Evaluation Criteria, DoD
5200.28-STD, National Computer, Security Center, December 1985.

53. Intel, "AGP Technology Tutorial", www.intel.com, February 2000.

54. Cadence, "Cadence", www.cadence.com, Cadence Design Systems, February
2000.

110

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir,VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5193

4. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Dr. Cynthia E. Irvine
Computer Science Department Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5193

Dr. William A. Arbaugh.
WAA Associates, LLC.
4264 Hermitage Dr.
Ellicott City, MD. 21042

7. Mr. James P. Anderson ,
James P. Anderson Company
Box 42
Fort Washington, PA 19034

8. Mr. Paul Pitelli
National Security Agency
Research and Development Building
R2, Technical Director
9800 Savage Road
Fort Meade, MD 20755-6000

111

Dr. Lee Taylor
National Security Agency
Research and Development Building
R22, Chief
9800 Savage Road
Fort Meade, MD 20755-6000

10. Ms. Donna Belt
National Security Agency
Research and Development Building
R23, Chief
9800 Savage Road
Fort Meade, MD 20755-6000

11. CAPTDanGalik
Space and Naval Warfare Systems Command
PMW 161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

12. Commander, Naval Security Group Command.
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585

13. Ms. Deborah M. Cooper
Deborah M. Cooper Company
P.O. Box 17753
Arlington, VA 22216

14. Ms. Louise Davidson
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington VA 22202

15. Mr. William Dawson
Community CIO Office
Washington DC 20505

112

16. COL Timothy A. Fong
COMMANDER/JED/IAESO
Defense Information Systems Agency
Columbia Pike Offices
5600 Columbia Pike
Falls Church, VA 22041-2717

17. Mr. David R Basel
Chief, IA Infrastructure and Engineering Branch
Information Assurance Support Organization
DISA/D6/JED
5600 Columbia Pike
Falls Church, VA 22041

18. LCDR James P. Downey
DISA D6/IAESO/MSL Engineering
5600 Columbia Pike
Falls Church, VA 22041-2717

19. Deniz Kuwetleri Komutanligi
Personel Tedarik ve Yetistirme Daire Baskanligi
06100 Bakanliklar, Ankara
TURKEY

20. Cihan Agacayak
PK.71
06502 Bahcelievler, Ankara
TURKEY

21. Deniz Harp Okulu Komutanligi.
Kutuphane
81704 Tuzla, Istanbul
TURKEY

113

